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Introduction

▶ Goals of this session
▶ Discuss the major ideas underlying Bayesian latent variable models

▶ See how these ideas work in practice

▶ Discuss some advanced issues and workflows



Introduction

▶ How will we meet those goals?
▶ Emphasize the “raw data” part of the models

▶ Model real datasets that are easily obtainable

▶ Include lots of code, so that you can work through concepts in the future



Introduction

▶ What is not covered: R background, highly exotic psychometrics models.

▶ Also, we will not spend time assessing MCMC convergence. See here for details on
how it works in blavaan.

▶ Also, there is much more checking and summary we could do with every model that
we discuss. We are time limited.

▶ I apologize now for discussing what you already know, and for assuming you know
what you don’t know!

https://ecmerkle.github.io/blavaan/articles/convergence_efficiency.html


Introduction

▶ Outline
▶ Latent variable model overview

▶ Bayesian methods overview

▶ Case studies: CFA, IRT, two-level

▶ Recommendations, workflows

▶ Advanced topics, requests



Model Overview



Model Overview

▶ In psychometrics and education, the latent variable in “latent variable models” is
typically a person’s unobserved trait.

▶ Let’s follow (some) tradition and call it θ.

▶ While we cannot observe θ directly, we can observe some other variable that serves
as a proxy for θ. Let’s call that other variable y .



Linear

▶ Linear equations are everywhere in statistics. So too in psychometrics.

▶ For traditional models, we assume that our observed variable is a noisy, linearly
function of θ.

▶ For now, let’s write it as

y = β0 + β1θ + e



Linear

y = β0 + β1θ + e

▶ This is a model of one observed variable, but we typically have multiple observed
variables.

▶ If θ were observed, this would be a regression model.

▶ We left out subscripts. So we could say that this is the model of a single person on
a single observed variable.



Subscripts

Let’s add subscripts for person i and variable j

yij = β0j + β1jθi + eij

▶ The subscripts on β0 and β1 show that the intercept and slope are unique to an
observed variable j .



Matrix

▶ It is customary to collect all the observed variables for person i in one vector. And
collect the intercepts for observed variables in one vector, and similarly for the
slopes. Then the j subscripts disappear:

yi = β0 + β1θi + ei

where bold represents a vector (or a matrix, though on matrices are on this slide)



Matrix

▶ We may also be interested in measuring multiple latent traits per person. In this
case, we also have a vector for θ:

yi = β0 + β1θi + ei

▶ Then β1 becomes a matrix.



Models

β0 + β1θi + ei

▶ From this simple linear equation, we can obtain many traditional psychometric
models:
▶ Observed variables are continuous: Factor analysis, SEM

▶ Observed variables are binary or ordinal: 2-parameter logistic model, graded response
model, generalized partial credit model.

▶ In the latter case, the linear equation does not directly predict the observed variables.
The linear equation predicts (a function of) the probability that a particular person
assumes a particular category of a particular variable.



Models

▶ The previous slide implies that β0 and β1 have different names in different
situations. (and also different Greek letters!)
▶ β0: Intercept, mean, difficulty, easiness

▶ β1: Loading, discrimination

▶ We have also ignored the fact that one latent variable can be predictive of a second
latent variable. This is what SEM is about, and it requires a second linear equation.



SEM

▶ The structural equation of SEM:

θi = α0 + α1θi + ϵi

▶ This can look crazy because θi appears on both sides of the equation!

▶ The key is to realize that no single element of θi can predict itself. Each element
can predict other elements, making this just another linear equation.



Model Summary

▶ So far, we have seen that the traditional psychometric models involve linear
relationships between the latent variables θ and (functions of) the observed
variables y . And in SEM, we can have linear relationships between different
elements of θ.

▶ We have also emphasized that these are models of raw data. Some presentations
begin with models of covariance matrices instead of raw data. I find that intuition
is lost when we begin with covariance matrices.



Bayesian Introduction



Model Estimation

▶ Traditionally, models are estimated via Maximum Likelihood. Idea:
▶ The model defines a likelihood function. Inputs to the function are data and model

parameters. Output is a single number (“the likelihood”).

▶ Different parameter values produce different numbers as output.

▶ We seek the parameter values that output the largest number, given our data.



Model Estimation

▶ How does this happen? Think about climbing a mountain.
▶ Start somewhere on the mountain (start with some parameter values).

▶ Figure out which way is up.

▶ Take a step in the upward direction (refine your parameter values).

▶ Continue these steps until you reach the peak.



Bayesian Estimation

▶ The same model likelihood is involved in Bayesian estimation. But now we
additionally take into account our prior expectations/beliefs about model
parameters.

▶ These expectations are encoded as prior distributions. They are sort of a
generalization of maximum likelihood:
▶ Maximum likelihood estimation: No/flat prior beliefs, anything can happen.

▶ Bayesian estimation: Prior beliefs could be flat, but they can also be informative.



Bayesian Estimation

▶ “Prior expectations sound subjective, and I don’t want a subjective statistical
analysis.”
▶ If it involves real data, some subjective decisions are already being made.

▶ You might not know what parameter values to expect, but you probably know what
you do not expect. There is where prior distributions can be helpful.



Identification

▶ Latent variables have no inherent location or scale.
▶ It is customary to fix each latent variable’s mean to 0 and variance to 1. (or,

sometimes, fix a loading to 1 instead of the variance.)

▶ These identification constraints can influence our prior beliefs about parameter values.
We will keep this in mind as we work through examples.

▶ Sometimes, the identification constraints change the stated prior distribution. See this
hyperlink.

https://doi.org/10.5964/meth.11167
https://doi.org/10.5964/meth.11167


Bayesian Estimation

▶ Beyond prior distributions, Bayesian model estimation procedures usually differ from
Maximum Likelihood:
▶ Maximum likelihood is seeking the top of the mountain (of the likelihood)

▶ Bayesian estimation typically surveys the full mountain, as opposed to only finding the
top. This is accomplished via Markov chain Monte Carlo.



MCMC

▶ Markov chain Monte Carlo: Draw samples of parameters from the posterior
distribution.
▶ Parameter values that are more likely will tend to be drawn more often.

▶ If we draw many samples, we can produce accurate summaries of the posterior
distribution.

▶ But we need many samples, and this can use lots of computer memory!



MCMC

▶ Specific flavors of MCMC include Gibbs sampling, Metropolis Hastings sampling,
and Hamiltonian Monte Carlo.

▶ These can differ in speed, efficiency, and flexibility.

▶ The MCMC methods are best compared by visualization:

https://chi-feng.github.io/mcmc-demo/app.html

https://chi-feng.github.io/mcmc-demo/app.html


Steps

▶ Steps that we will use in our Bayesian case studies to come:
▶ Set prior distributions, making use of prior predictive checks.

▶ Estimate model via MCMC.

▶ Do posterior predictive checks and other model criticisms.

▶ Summarize key results.



Case 1: CFA



CFA

▶ For our first case study, we will do a CFA of item response data.

▶ I might get banned from the NCME conference, but I will apply a model of
continuous data to 0/1 item responses!

▶ Why? It will be easier to see differences between the CFA and the item response
model that comes next.



Data

▶ Data: Responses of 565 Austrian students to 7 mathematics items from PISA 2009.

▶ Conveniently included in the sirt package:

data("data.pisaMath", package = "sirt")

dat <- data.pisaMath$data



Data

▶ Obtaining response patterns

patts <- with(dat, paste0(M192Q01, M406Q01, M423Q01, M496Q01, M564Q01,
M571Q01, M603Q01))



Data

summary( as.factor(patts) )

## 1111111 0000000 0010000 0111111 1111011 0010001 0011000 0011001 0011111 1101111 1111101
## 51 24 22 13 13 12 12 12 12 12 12
## 0010100 1011111 0011011 0011100 1011011 1110111 1111110 0010010 0111011 1010011 1111001
## 11 11 9 9 9 9 9 8 8 8 8
## 0000001 0000100 0000110 0011010 0110100 1010000 1010001 0001000 0010101 0010110 0011110
## 7 7 7 7 7 7 7 6 6 6 6
## 1010111 1011000 1011001 0000010 0100111 0110011 0110110 1010100 1111010 0010011 0100100
## 6 6 6 5 5 5 5 5 5 4 4
## 0101110 0111000 0111010 1001111 1010101 1010110 1011110 1110001 1111100 0001001 0001100
## 4 4 4 4 4 4 4 4 4 3 3
## 0001110 0001111 0101011 0110001 0110111 0111100 0111110 1000101 1110100 1110101 1111000
## 3 3 3 3 3 3 3 3 3 3 3
## 0000111 0001011 0100010 0100101 0101111 0110000 0110010 0111101 1000001 1000011 1000111
## 2 2 2 2 2 2 2 2 2 2 2
## 1001011 1010010 1011010 1011100 1100111 1101010 1101011 1110010 1110011 0000011 0000101
## 2 2 2 2 2 2 2 2 2 1 1
## 0001010 0010111 0011101 0100000 0100011 0100110 0101000 0101010 0101101 0110101 0111001
## 1 1 1 1 1 1 1 1 1 1 1
## (Other)
## 14



Model

▶ We are fitting a 1-factor CFA that assumes continuous responses!

▶ Parameters:
▶ Intercepts (1 for each item).

▶ Slopes (1 loading for each item).

▶ Residual standard deviations (1 for each item).

▶ Factor mean fixed to 0, factor variance fixed to 1.



Model

▶ These are all binary items scored as correct/incorrect. What do we already know
about the parameters?
▶ Intercepts: Should be between 0 and 1 (related to percent correct).

▶ Slopes: Between 0 and 1 (person parameters are like a z-score, and they are predicting
a number between 0 and 1).

▶ Residual standard deviations: No larger than 1.



Priors

▶ Based on this knowledge, some “mildly informative” prior distributions:
▶ Intercepts: Normal(.5, .5) ← second number is SD

▶ Slopes: Normal(.5, .25)

▶ Residual SD: Gamma(1, 1)



Priors

▶ How did I come up with Gamma(1, 1)?

▶ One approach: we refresh yourself about properties of the gamma distribution,
which provides intuition for setting prior distribution parameters.

▶ But I typically summarize random numbers:

summary( rgamma(1e5, 1, 1) )

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000001 0.287644 0.698202 1.003282 1.395936 13.631987



Priors

▶ We will now specify these prior distributions in blavaan.

▶ Greek letters correspond to LISREL parameters. For us: nu is intercepts, lambda is
loadings, theta is residual standard deviations.

mypriors <- dpriors(nu = "normal(.5, .5)", lambda = "normal(.5, .25)",
theta = "gamma(1, 1)[sd]")

▶ Correspondence between Greek letters and parameters is found at this hyperlink.

https://ecmerkle.github.io/blavaan/articles/prior.html


Priors
▶ Now that we have priors, let’s generate data from these priors to see whether the

data are plausible.

▶ We will use prisamp = TRUE in blavaan:
## specifying my model:
m1 <- ' f1 =~ M192Q01 + M406Q01 + M423Q01 + M496Q01 + M564Q01 + M571Q01 + M603Q01 '

## drawing prior samples (100 for each of three chains):
m1pri <- bcfa(m1, data = dat, burnin = 100, sample = 100, std.lv = TRUE, prisamp = TRUE,

dp = mypriors)

##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.000195 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.95 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: WARNING: There aren't enough warmup iterations to fit the
## Chain 1: three stages of adaptation as currently configured.
## Chain 1: Reducing each adaptation stage to 15%/75%/10% of
## Chain 1: the given number of warmup iterations:
## Chain 1: init_buffer = 15
## Chain 1: adapt_window = 75
## Chain 1: term_buffer = 10
## Chain 1:
## Chain 1: Iteration: 1 / 200 [ 0%] (Warmup)
## Chain 1: Iteration: 20 / 200 [ 10%] (Warmup)
## Chain 1: Iteration: 40 / 200 [ 20%] (Warmup)
## Chain 1: Iteration: 60 / 200 [ 30%] (Warmup)
## Chain 1: Iteration: 80 / 200 [ 40%] (Warmup)
## Chain 1: Iteration: 100 / 200 [ 50%] (Warmup)
## Chain 1: Iteration: 101 / 200 [ 50%] (Sampling)
## Chain 1: Iteration: 120 / 200 [ 60%] (Sampling)
## Chain 1: Iteration: 140 / 200 [ 70%] (Sampling)
## Chain 1: Iteration: 160 / 200 [ 80%] (Sampling)
## Chain 1: Iteration: 180 / 200 [ 90%] (Sampling)
## Chain 1: Iteration: 200 / 200 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.387 seconds (Warm-up)
## Chain 1: 0.49 seconds (Sampling)
## Chain 1: 0.877 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.000168 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.68 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: WARNING: There aren't enough warmup iterations to fit the
## Chain 2: three stages of adaptation as currently configured.
## Chain 2: Reducing each adaptation stage to 15%/75%/10% of
## Chain 2: the given number of warmup iterations:
## Chain 2: init_buffer = 15
## Chain 2: adapt_window = 75
## Chain 2: term_buffer = 10
## Chain 2:
## Chain 2: Iteration: 1 / 200 [ 0%] (Warmup)
## Chain 2: Iteration: 20 / 200 [ 10%] (Warmup)
## Chain 2: Iteration: 40 / 200 [ 20%] (Warmup)
## Chain 2: Iteration: 60 / 200 [ 30%] (Warmup)
## Chain 2: Iteration: 80 / 200 [ 40%] (Warmup)
## Chain 2: Iteration: 100 / 200 [ 50%] (Warmup)
## Chain 2: Iteration: 101 / 200 [ 50%] (Sampling)
## Chain 2: Iteration: 120 / 200 [ 60%] (Sampling)
## Chain 2: Iteration: 140 / 200 [ 70%] (Sampling)
## Chain 2: Iteration: 160 / 200 [ 80%] (Sampling)
## Chain 2: Iteration: 180 / 200 [ 90%] (Sampling)
## Chain 2: Iteration: 200 / 200 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.398 seconds (Warm-up)
## Chain 2: 0.371 seconds (Sampling)
## Chain 2: 0.769 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.000168 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.68 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: WARNING: There aren't enough warmup iterations to fit the
## Chain 3: three stages of adaptation as currently configured.
## Chain 3: Reducing each adaptation stage to 15%/75%/10% of
## Chain 3: the given number of warmup iterations:
## Chain 3: init_buffer = 15
## Chain 3: adapt_window = 75
## Chain 3: term_buffer = 10
## Chain 3:
## Chain 3: Iteration: 1 / 200 [ 0%] (Warmup)
## Chain 3: Iteration: 20 / 200 [ 10%] (Warmup)
## Chain 3: Iteration: 40 / 200 [ 20%] (Warmup)
## Chain 3: Iteration: 60 / 200 [ 30%] (Warmup)
## Chain 3: Iteration: 80 / 200 [ 40%] (Warmup)
## Chain 3: Iteration: 100 / 200 [ 50%] (Warmup)
## Chain 3: Iteration: 101 / 200 [ 50%] (Sampling)
## Chain 3: Iteration: 120 / 200 [ 60%] (Sampling)
## Chain 3: Iteration: 140 / 200 [ 70%] (Sampling)
## Chain 3: Iteration: 160 / 200 [ 80%] (Sampling)
## Chain 3: Iteration: 180 / 200 [ 90%] (Sampling)
## Chain 3: Iteration: 200 / 200 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.409 seconds (Warm-up)
## Chain 3: 0.405 seconds (Sampling)
## Chain 3: 0.814 seconds (Total)
## Chain 3:

## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess

## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess

## Computing post-estimation metrics (including lvs if requested)...



Priors

▶ Now we can generate data from these prior samples. The command below gives us
300 datasets, each with 565 individuals and 7 variables.

pridat <- sampleData(m1pri, simplify = TRUE)



Priors
▶ Histogram of the first variable from one generated dataset:

dataset <- pridat[[ 1 ]]
hist(dataset[, 1], main = "")

dataset[, 1]
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Priors
▶ We can also obtain a histogram of correlations between the first two variables. But

now we have to summarize across datasets.
cors <- sapply(pridat, function(x) cor( x[,1], x[,2] ))
hist(cors, main = "")

cors
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Priors

▶ From these summaries, we see what “mildly informative” means: variables are close
to being between 0 and 1, and correlations are on the positive side.

▶ If we wanted to, we could make revisions to keep the data closer to (0, 1). The
current dataset is somewhat large, so it might not matter.

▶ But sensitivity analysis is also worthwhile!



Estimation
▶ We now estimate the model by removing prisamp = TRUE from our previous

command, and running for longer:
m1est <- bcfa(m1, data = dat, burnin = 1000, sample = 1000, std.lv = TRUE,

dp = mypriors)

##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.000204 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.04 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 1.652 seconds (Warm-up)
## Chain 1: 1.561 seconds (Sampling)
## Chain 1: 3.213 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.000173 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.73 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 1.619 seconds (Warm-up)
## Chain 2: 1.585 seconds (Sampling)
## Chain 2: 3.204 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.000177 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.77 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 1.766 seconds (Warm-up)
## Chain 3: 1.6 seconds (Sampling)
## Chain 3: 3.366 seconds (Total)
## Chain 3:
## Computing post-estimation metrics (including lvs if requested)...



Estimation I
summary(m1est)

## blavaan 0.5.3.1251 ended normally after 1000 iterations
##
## Estimator BAYES
## Optimization method MCMC
## Number of model parameters 14
##
## Number of observations 565
##
## Statistic MargLogLik PPP
## Value -2657.623 0.010
##
## Parameter Estimates:
##
##
## Latent Variables:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## f1 =~
## M192Q01 0.267 0.026 0.215 0.317 0.999 normal(.5, .25)
## M406Q01 0.277 0.025 0.228 0.324 0.999 normal(.5, .25)
## M423Q01 0.103 0.022 0.061 0.145 0.999 normal(.5, .25)
## M496Q01 0.236 0.025 0.186 0.285 1.000 normal(.5, .25)
## M564Q01 0.180 0.026 0.128 0.230 0.999 normal(.5, .25)
## M571Q01 0.254 0.026 0.204 0.304 0.999 normal(.5, .25)
## M603Q01 0.249 0.025 0.198 0.298 0.999 normal(.5, .25)
##
## Variances:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .M192Q01 0.180 0.014 0.155 0.208 0.999 gamma(1, 1)[sd]



Estimation II

## .M406Q01 0.173 0.013 0.149 0.199 0.999 gamma(1, 1)[sd]
## .M423Q01 0.183 0.011 0.163 0.206 0.999 gamma(1, 1)[sd]
## .M496Q01 0.195 0.014 0.169 0.222 1.000 gamma(1, 1)[sd]
## .M564Q01 0.220 0.014 0.194 0.249 0.999 gamma(1, 1)[sd]
## .M571Q01 0.186 0.014 0.161 0.215 1.000 gamma(1, 1)[sd]
## .M603Q01 0.188 0.013 0.164 0.216 1.000 gamma(1, 1)[sd]
## f1 1.000



Estimation Notes

▶ The intercepts do not appear in the output. They are not needed for estimation of
this model (the sample covariance matrix is a sufficient statistic), but can be
obtained by estimating with the argument meanstructure = TRUE.

▶ The third item stands out as having a lower loading than the others.

▶ The posterior predictive p-value is low, suggesting not-so-good model fit.



Fit Indices

▶ Bayesian versions of traditional fit indices are available (Garnier-Villareal &
Jorgensen, 2020).

res <- blavFitIndices(m1est, pD = "loo")

summary(res)

##
## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for devm-based fit indices:
##
## EAP Median MAP SD lower upper
## BRMSEA 0.046 0.045 0.045 0.005 0.037 0.053
## BGammaHat 0.988 0.989 0.989 0.003 0.985 0.993
## adjBGammaHat 0.983 0.984 0.984 0.004 0.978 0.989
## BMc 0.979 0.980 0.981 0.005 0.973 0.987



Posterior Checks

▶ While global statistics of model fit are helpful, targeted posterior checks can provide
detailed information about fit:
▶ Generate data from your posterior distribution, summarize

▶ Summarize your observed data in the same way

▶ Create visual comparisons

▶ Your checks can be anything, so long as you can code it! In the following slides, we
show some examples using the bayesplot package. Some extra commands will help
us arrange data in the required format.



Posterior Checks I

## First item: observed data vs posterior predictions
postdat <- sampleData(m1est, nrep = 1000, simplify = TRUE)

y1rep <- t( sapply(postdat, function(x) x[,1]) )

ppc_dens_overlay(y = blavInspect(m1est, 'data')[, 1], yrep = y1rep[1:200, ])



Posterior Checks II
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Posterior Checks

▶ The previous graph shows that our observed data are 0/1, but the model predicts
continuous data.

▶ The model predictions are sort of similar to percent correct, except they go below 0
and above 1.



Posterior Checks I

## Percent correct vs posterior predictions, all items
obsdat <- blavInspect(m1est, 'data')

yrep <- lapply(1:7, function(i) t( sapply(postdat, function(x) x[, i]) ))
yrep <- do.call("cbind", yrep)

ppc_stat_grouped(y = as.numeric(obsdat), yrep = yrep, group = rep(1:7, each = nobs(m1est)))



Posterior Checks II
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Posterior Checks I

## Observed correlations vs posterior correlations, all pairs of items
cormat <- cor(obsdat)
obscor <- cormat[ lower.tri(cormat) ]

correp <- lapply(postdat, cor)
correp <- lapply(correp, function(x) x[ lower.tri(x) ])
correp <- do.call("rbind", correp)

yobs <- as.numeric(obscor)

grp <- as.factor( unlist( sapply(1:6, function(i) paste0("y", i, (i+1):7)) ) )
ppc_stat_grouped(y = yobs, yrep = correp, group = grp, facet_args = list(nrow = 4)) +

theme(legend.position = "none")



Posterior Checks II
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Posterior check

▶ The graph below shows that the model has trouble capturing small observed
correlations.

ppps <- sapply(1:21, function(i) min(mean(correp[ ,i] < yobs[i]), mean(correp[, i] > yobs[i])))

plot(obscor, ppps, xlab = "Observed correlation", ylab = "ppp", pch = 20)
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Summary

▶ So:
▶ Our overall model fit is not the best, also not the worst.

▶ The model had trouble predicting weak correlations. This makes sense, because a
one-factor model is generally about predicting relationships between all observed
variables.

▶ But we treated our binary data as continuous! Next, we see what happens when we
treat the data as categorical.



Case 2: IRT



IRT

▶ Now, we use an item response model that is specifically developed for binary
responses.

▶ Before: We were predicting our 0/1 data on a continuous scale. Model predictions
were like probabilities, except they could go below 0 and above 1.

▶ Now: Same model, except it is predicting the z-score associated with the probability
of being correct. The z-scores can be negative or positive, so it is no problem to
have model predictions below 0 or above 1.



Model

▶ The types of model parameters are basically the same as before:
▶ Intercept (threshold): Larger numbers mean you are less likely to be correct. So

sometimes called item difficulty.

▶ Slope: How do person parameters influence chance (z-score) of being correct?

▶ Residual standard deviations: Fixed to 1, because variance of 0/1 data is determined
by the mean.

▶ Factor mean fixed to 0, factor variance fixed to 1.



Model

▶ Note: IRT modelers will often use an equivalent difficulty/discrimination
parameterization, instead of slope/intercept! It is possible to obtain one set of
parameters from the other.
▶ Slope/intercept: −β0j + β1jθi

▶ Discrimination/difficulty: α1j(θi − δ0j)



Model

▶ Also note: IRT modelers will often predict the log-odds of being correct, instead of
the z-score of being correct!

▶ This is the difference between the logit link function (log odds) and the probit link
function (z-score).

▶ So our model could be called a two-parameter probit, vs a two-parameter logistic.

▶ Probit parameter estimates can be converted to logit estimates, and vice versa.
(see, e.g., McDonald, 1999)



Priors

▶ When setting priors, it helps to remember that we are predicting z-scores. It would
be unusual to observe a number outside of (−3, 3). So some initial prior
distributions could be:
▶ Intercepts: Normal(0, 1) ← second number is SD

▶ Slopes: Normal(1, .5)



Priors

▶ Like before, we specify the prior distributions in blavaan. Intercepts are now in tau.
mypriors <- dpriors(tau = "normal(0, 1.5)", lambda = "normal(1, .5)")



Priors
▶ Like before, we generate parameters from the priors:

## the model is the same as before:
m2 <- ' f1 =~ M192Q01 + M406Q01 + M423Q01 + M496Q01 + M564Q01 + M571Q01 + M603Q01 '

## drawing prior samples (100 for each of three chains):
m2pri <- bcfa(m2, data = dat, burnin = 100, sample = 100, std.lv = TRUE, prisamp = TRUE,

dp = mypriors, ordered = TRUE)

##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.001222 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 12.22 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: WARNING: There aren't enough warmup iterations to fit the
## Chain 1: three stages of adaptation as currently configured.
## Chain 1: Reducing each adaptation stage to 15%/75%/10% of
## Chain 1: the given number of warmup iterations:
## Chain 1: init_buffer = 15
## Chain 1: adapt_window = 75
## Chain 1: term_buffer = 10
## Chain 1:
## Chain 1: Iteration: 1 / 200 [ 0%] (Warmup)
## Chain 1: Iteration: 20 / 200 [ 10%] (Warmup)
## Chain 1: Iteration: 40 / 200 [ 20%] (Warmup)
## Chain 1: Iteration: 60 / 200 [ 30%] (Warmup)
## Chain 1: Iteration: 80 / 200 [ 40%] (Warmup)
## Chain 1: Iteration: 100 / 200 [ 50%] (Warmup)
## Chain 1: Iteration: 101 / 200 [ 50%] (Sampling)
## Chain 1: Iteration: 120 / 200 [ 60%] (Sampling)
## Chain 1: Iteration: 140 / 200 [ 70%] (Sampling)
## Chain 1: Iteration: 160 / 200 [ 80%] (Sampling)
## Chain 1: Iteration: 180 / 200 [ 90%] (Sampling)
## Chain 1: Iteration: 200 / 200 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 4.891 seconds (Warm-up)
## Chain 1: 3.928 seconds (Sampling)
## Chain 1: 8.819 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.001128 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 11.28 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: WARNING: There aren't enough warmup iterations to fit the
## Chain 2: three stages of adaptation as currently configured.
## Chain 2: Reducing each adaptation stage to 15%/75%/10% of
## Chain 2: the given number of warmup iterations:
## Chain 2: init_buffer = 15
## Chain 2: adapt_window = 75
## Chain 2: term_buffer = 10
## Chain 2:
## Chain 2: Iteration: 1 / 200 [ 0%] (Warmup)
## Chain 2: Iteration: 20 / 200 [ 10%] (Warmup)
## Chain 2: Iteration: 40 / 200 [ 20%] (Warmup)
## Chain 2: Iteration: 60 / 200 [ 30%] (Warmup)
## Chain 2: Iteration: 80 / 200 [ 40%] (Warmup)
## Chain 2: Iteration: 100 / 200 [ 50%] (Warmup)
## Chain 2: Iteration: 101 / 200 [ 50%] (Sampling)
## Chain 2: Iteration: 120 / 200 [ 60%] (Sampling)
## Chain 2: Iteration: 140 / 200 [ 70%] (Sampling)
## Chain 2: Iteration: 160 / 200 [ 80%] (Sampling)
## Chain 2: Iteration: 180 / 200 [ 90%] (Sampling)
## Chain 2: Iteration: 200 / 200 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 4.865 seconds (Warm-up)
## Chain 2: 3.922 seconds (Sampling)
## Chain 2: 8.787 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.001126 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 11.26 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: WARNING: There aren't enough warmup iterations to fit the
## Chain 3: three stages of adaptation as currently configured.
## Chain 3: Reducing each adaptation stage to 15%/75%/10% of
## Chain 3: the given number of warmup iterations:
## Chain 3: init_buffer = 15
## Chain 3: adapt_window = 75
## Chain 3: term_buffer = 10
## Chain 3:
## Chain 3: Iteration: 1 / 200 [ 0%] (Warmup)
## Chain 3: Iteration: 20 / 200 [ 10%] (Warmup)
## Chain 3: Iteration: 40 / 200 [ 20%] (Warmup)
## Chain 3: Iteration: 60 / 200 [ 30%] (Warmup)
## Chain 3: Iteration: 80 / 200 [ 40%] (Warmup)
## Chain 3: Iteration: 100 / 200 [ 50%] (Warmup)
## Chain 3: Iteration: 101 / 200 [ 50%] (Sampling)
## Chain 3: Iteration: 120 / 200 [ 60%] (Sampling)
## Chain 3: Iteration: 140 / 200 [ 70%] (Sampling)
## Chain 3: Iteration: 160 / 200 [ 80%] (Sampling)
## Chain 3: Iteration: 180 / 200 [ 90%] (Sampling)
## Chain 3: Iteration: 200 / 200 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 4.571 seconds (Warm-up)
## Chain 3: 3.951 seconds (Sampling)
## Chain 3: 8.522 seconds (Total)
## Chain 3:

## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess

## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess

## Computing post-estimation metrics (including lvs if requested)...



Priors

▶ Now we can generate data from the priors. The type = "link" argument says
that we want to generate z-scores associated with the probability of being correct,
as opposed to the original 0/1 data:

pridat <- sampleData(m2pri, simplify = TRUE, type = "link")



Priors
▶ Histogram of the first variable from one generated dataset:

dataset <- pridat[[ 1 ]]
hist(dataset[, 1], main = "")
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Priors

▶ Translated to probabilities of being correct:
hist(pnorm( dataset[, 1] ), main = "")

pnorm(dataset[, 1])
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Priors
▶ The previous histogram produced data where people had extreme chances of being

correct. Does it hold across all the generated datasets?
hist(pnorm( do.call("rbind", pridat)[, 1] ), main = "")

pnorm(do.call("rbind", pridat)[, 1])
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Priors

▶ If the items are good, then we would expect test-takers to have a probability of
being correct that is not too close to 0 or 1. So we might revise our priors to not
produce such extreme probabilities.
▶ Intercept: z-score associated with probability that the average test-taker gets the item

correct. Say that the probability ranges from around .2 to .8, which are z-scores of
±.84. Normal(0, .28)

▶ Slope: For two test-takers whose proficiencies differ by 1 SD, what is the expected
increase in probability correct? On probit scale, an increase of 1 could go from 16%
chance to 50% chance, which is large. So Normal(.4, .2)



Priors

▶ The discussion on the previous slide leads to
mypriors <- dpriors(tau = "normal(0, .28)", lambda = "normal(.4, .2)")



Posteriors
▶ We claim that our prior distributions reflect general expectations, but are only

mildly informative.

▶ But we can also do a sensitivity analysis to explore how our priors influence results.

▶ So we fit two models, one with our informative priors and one without.
m2fit <- bcfa(m2, data = dat, std.lv = TRUE, ordered = TRUE, dp = mypriors)

##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.001441 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 14.41 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 1: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 1: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 1: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 1: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 1: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 1: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 1: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 1: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 1: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 1: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 1: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 51.738 seconds (Warm-up)
## Chain 1: 48.094 seconds (Sampling)
## Chain 1: 99.832 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.001511 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 15.11 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 2: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 2: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 2: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 2: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 2: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 2: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 2: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 2: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 2: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 2: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 2: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 48.874 seconds (Warm-up)
## Chain 2: 48.36 seconds (Sampling)
## Chain 2: 97.234 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.001491 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 14.91 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 3: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 3: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 3: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 3: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 3: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 3: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 3: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 3: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 3: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 3: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 3: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 47.775 seconds (Warm-up)
## Chain 3: 48.513 seconds (Sampling)
## Chain 3: 96.288 seconds (Total)
## Chain 3:
## Computing post-estimation metrics (including lvs if requested)...



Posteriors
m2nifit <- bcfa(m2, data = dat, std.lv = TRUE, ordered = TRUE)

##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.001442 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 14.42 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 1: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 1: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 1: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 1: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 1: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 1: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 1: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 1: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 1: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 1: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 1: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 48.051 seconds (Warm-up)
## Chain 1: 47.998 seconds (Sampling)
## Chain 1: 96.049 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.001471 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 14.71 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 2: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 2: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 2: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 2: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 2: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 2: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 2: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 2: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 2: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 2: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 2: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 49.093 seconds (Warm-up)
## Chain 2: 48.253 seconds (Sampling)
## Chain 2: 97.346 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.001439 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 14.39 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 3: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 3: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 3: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 3: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 3: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 3: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 3: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 3: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 3: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 3: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 3: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 50.4 seconds (Warm-up)
## Chain 3: 48.194 seconds (Sampling)
## Chain 3: 98.594 seconds (Total)
## Chain 3:
## Computing post-estimation metrics (including lvs if requested)...



Posteriors I
summary(m2fit)

## blavaan 0.5.3.1251 ended normally after 1000 iterations
##
## Estimator BAYES
## Optimization method MCMC
## Number of model parameters 14
##
## Number of observations 565
##
## Statistic MargLogLik PPP
## Value NA 0.274
##
## Parameter Estimates:
##
## Parameterization Theta
##
## Latent Variables:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## f1 =~
## M192Q01 0.770 0.095 0.588 0.962 1.003 normal(.4, .2)
## M406Q01 0.808 0.100 0.626 1.011 1.006 normal(.4, .2)
## M423Q01 0.328 0.073 0.192 0.473 1.006 normal(.4, .2)
## M496Q01 0.666 0.085 0.503 0.834 1.000 normal(.4, .2)
## M564Q01 0.488 0.079 0.343 0.654 1.002 normal(.4, .2)
## M571Q01 0.721 0.095 0.540 0.913 1.008 normal(.4, .2)
## M603Q01 0.699 0.091 0.531 0.887 1.001 normal(.4, .2)
##
## Intercepts:
## Estimate Post.SD pi.lower pi.upper Rhat Prior



Posteriors II
## .M192Q01 0.000
## .M406Q01 0.000
## .M423Q01 0.000
## .M496Q01 0.000
## .M564Q01 0.000
## .M571Q01 0.000
## .M603Q01 0.000
## f1 0.000
##
## Thresholds:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## M192Q01|t1 0.140 0.064 0.011 0.263 1.002 normal(0, .28)
## M406Q01|t1 0.191 0.067 0.059 0.323 1.000 normal(0, .28)
## M423Q01|t1 -0.647 0.060 -0.765 -0.533 1.005 normal(0, .28)
## M496Q01|t1 -0.156 0.062 -0.284 -0.041 1.000 normal(0, .28)
## M564Q01|t1 -0.038 0.057 -0.150 0.070 1.000 normal(0, .28)
## M571Q01|t1 -0.138 0.063 -0.262 -0.019 1.000 normal(0, .28)
## M603Q01|t1 -0.161 0.062 -0.282 -0.043 1.001 normal(0, .28)
##
## Variances:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .M192Q01 1.000
## .M406Q01 1.000
## .M423Q01 1.000
## .M496Q01 1.000
## .M564Q01 1.000
## .M571Q01 1.000
## .M603Q01 1.000
## f1 1.000
##



Posteriors III

## Scales y*:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## M192Q01 0.792
## M406Q01 0.778
## M423Q01 0.950
## M496Q01 0.832
## M564Q01 0.899
## M571Q01 0.811
## M603Q01 0.820



Sensitivity

▶ Comparing informative priors to default priors, the informative priors appear to be
no worse by cross-validation metrics:

fitMeasures(m2fit)

## npar logl ppp bic dic p_dic waic p_waic
## 14.000 -2493.324 0.274 5075.339 5011.459 12.405 5011.045 11.959
## se_waic looic p_loo se_loo margloglik
## 43.440 5011.081 11.977 43.440 NA

fitMeasures(m2nifit)

## npar logl ppp bic dic p_dic waic p_waic
## 14.000 -2491.693 0.311 5072.076 5010.987 13.801 5011.410 14.157
## se_waic looic p_loo se_loo margloglik
## 47.249 5011.454 14.180 47.249 NA



Sensitivity I

▶ Comparing loadings under the two models (other parameters are more similar):
## related to code at https://github.com/stan-dev/bayesplot/issues/232
combined <- rbind(plot(m2fit, 1:7, 'intervals_data', showplot = FALSE),

plot(m2nifit, 1:7, 'intervals_data', showplot = FALSE))
combined$model <- rep(c("Informative", "Default"), each = nrow(combined)/2)

pos <- position_nudge(y = ifelse(combined$model == "Default", 0, 0.2))

ggplot(combined, aes(x = m, y = parameter, color = model)) +
geom_linerange(aes(xmin = l, xmax = h), position = pos, linewidth = 2)+
geom_linerange(aes(xmin = ll, xmax = hh), position = pos)+
geom_point(position = pos, color="black")



Sensitivity II
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Sensitivity

▶ The graph shows that the informative priors have shrunk some loadings toward zero.

▶ I am not generally concerned about this because the loadings are notoriously
difficult to estimate (like estimating an interaction between person and item, as
opposed to a main effect). It is doubtful that shrinkage will hurt the model’s
generalizability.

▶ The WAIC and LOO metrics also support the idea that informative priors could
provide better generalization. (If you don’t know these, they have similar goals to
AIC or BIC.)

▶ But you might also consider the purpose of the model.



Model Checking

▶ The posterior predictive p-value indicates reasonable model fit. We can dig deeper
with customized posterior predictive checks via ppmc().

▶ There is a good deal of flexibility here because you can write custom R functions
involving a blavaan object.

▶ Bonifay & Depaoli (2021) describe use of the item-total correlation: empirical
correlation between each item and the sum of remaining items, vs posterior
distribution of the same correlation.



Model Checking

▶ Define a function that computes item-total correlations, then send to ppmc():

it_tot <- function(fit) {
tmpdata <- fit@Data@X[[1]]
sapply(1:ncol(tmpdata),

function(i) cor(tmpdata[,i], rowSums(tmpdata[,-i])))
}

itt2 <- ppmc(m2fit, discFUN = it_tot)



Model Checking

▶ These ppps indicate that the observed item-total correlations fall inside the
posterior predictive distributions. Some columns indicate no variability because the
observed item-total correlation is a function of data only (as opposed to function of
data and model parameters).

summary(itt2)

##
## Posterior summary statistics and highest posterior density (HPD) 95% credible intervals for the posterior distribution of realized discrepancy-function values based on observed data, along with posterior predictive p values to test hypotheses in either direction:
##
##
## EAP Median MAP SD lower upper PPP_sim_GreaterThan_obs PPP_sim_LessThan_obs
## 1 0.415 0.415 0.414 0 0.415 0.415 0.130 0.870
## 2 0.424 0.424 0.423 0 0.424 0.424 0.137 0.863
## 3 0.176 0.176 0.176 0 0.176 0.176 0.522 0.478
## 4 0.368 0.368 0.368 0 0.368 0.368 0.235 0.765
## 5 0.264 0.264 0.264 0 0.264 0.264 0.518 0.482
## 6 0.386 0.386 0.386 0 0.386 0.386 0.230 0.770
## 7 0.371 0.371 0.371 0 0.371 0.371 0.282 0.718



Model Comparison

▶ We cannot easily compare this IRT model to the CFA that we fit to the same data:
▶ The CFA treats the data as continuous; the model likelihood involves a normal density.

▶ The IRT likelihood involves probabilities of discrete categories.

▶ Densities are not directly comparable to probabilities.



Summary

▶ We estimated our Bayesian IRT model as a factor analysis of discrete data.
▶ We could call it either item factor analysis or item response model: estimation

methods sometimes differ for frequentist models, but they are the same thing in
Bayesian modeling.

▶ Parameters remain similar to those from CFA of continuous data. We are now
predicting probit(P(correct)), whereas the CFA was predicting continuous data that
only assumed values of 0 and 1.

▶ We saw some model checks and comparisons that are especially flexible in blavaan,
because we can use the R universe to define functions for posterior checks.



Case 3: Explanatory IRT



Explanatory IRT

▶ The previous section covered a traditional Bayesian IRT model. That model has
many uses, including:
▶ Item selection

▶ Adaptive testing

▶ Scoring/estimating person parameters



Explanatory IRT

▶ The previous IRT model might be unsatisfying if we want to understand why people
responded in the way that they did:
▶ Why is item 1 more difficult than item 2?

▶ Why is person 1 more proficient than person 2?

▶ We can start to address these questions by including extra covariates in the model.
Then we might call our model an explanatory item response model (see De Boeck
& Wilson, 2004).



Explanatory IRT

▶ Some possibilities:
▶ Instead of fixing average person proficiency to 0, use covariates to predict average

proficiency.

▶ Decompose item difficulties into effects associated with specific item attributes.

▶ Person-by-item interactions, getting at differential item functioning.



Explanatory IRT

▶ Here, we expand on our previous model by adding person covariates: female (0/1)
and SES (centered/scaled).

▶ The model provides information about how the two covariates are predictive of a
person’s proficiency across the 7 items.

▶ Our outcome variable (proficiency) is unobserved. Bayesian methods can help us
characterize uncertainty in the estimated relationships between observed covariates
and unobserved outcome.



Model

▶ From a blavaan point of view, including covariates is a simple addition to the
previous model syntax.

m3 <- ' f1 =~ M192Q01 + M406Q01 + M423Q01 + M496Q01 + M564Q01 + M571Q01 + M603Q01
f1 ~ female + hisei + female:hisei '



Model

▶ We now use bsem() because the model includes regressions involving latent
variables (though bcfa() still works!).

▶ Also, fixed.x = TRUE treats our covariates as fixed (as in traditional regression).

▶ Also, save.lvs = TRUE will facilitate model checking.



Model
m3fit <- bsem(m3, data = dat, std.lv = TRUE, ordered = TRUE, dp = mypriors,

fixed.x = TRUE, save.lvs = TRUE)

##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.002825 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 28.25 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 1: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 1: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 1: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 1: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 1: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 1: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 1: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 1: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 1: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 1: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 1: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 66.111 seconds (Warm-up)
## Chain 1: 74.081 seconds (Sampling)
## Chain 1: 140.192 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.002081 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 20.81 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 2: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 2: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 2: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 2: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 2: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 2: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 2: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 2: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 2: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 2: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 2: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 72.034 seconds (Warm-up)
## Chain 2: 72.58 seconds (Sampling)
## Chain 2: 144.614 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.002164 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 21.64 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 3: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 3: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 3: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 3: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 3: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 3: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 3: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 3: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 3: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 3: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 3: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 72.985 seconds (Warm-up)
## Chain 3: 77.012 seconds (Sampling)
## Chain 3: 149.997 seconds (Total)
## Chain 3:
## Computing post-estimation metrics (including lvs if requested)...



Results I
summary(m3fit)

## blavaan 0.5.3.1253 ended normally after 1000 iterations
##
## Estimator BAYES
## Optimization method MCMC
## Number of model parameters 17
##
## Number of observations 565
##
## Statistic MargLogLik PPP
## Value NA 0.061
##
## Parameter Estimates:
##
## Parameterization Theta
##
## Latent Variables:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## f1 =~
## M192Q01 0.758 0.092 0.585 0.943 1.005 normal(.4, .2)
## M406Q01 0.747 0.092 0.577 0.933 1.000 normal(.4, .2)
## M423Q01 0.312 0.067 0.183 0.446 1.003 normal(.4, .2)
## M496Q01 0.629 0.083 0.477 0.796 1.007 normal(.4, .2)
## M564Q01 0.424 0.071 0.287 0.564 1.000 normal(.4, .2)
## M571Q01 0.685 0.086 0.521 0.858 1.002 normal(.4, .2)
## M603Q01 0.647 0.082 0.495 0.816 1.002 normal(.4, .2)
##
## Regressions:
## Estimate Post.SD pi.lower pi.upper Rhat Prior



Results II
## f1 ~
## female -0.202 0.107 -0.412 0.014 1.002 normal(0,10)
## hisei 0.442 0.080 0.288 0.602 0.999 normal(0,10)
## female:hisei -0.199 0.111 -0.421 0.013 0.999 normal(0,10)
##
## Intercepts:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .M192Q01 0.000
## .M406Q01 0.000
## .M423Q01 0.000
## .M496Q01 0.000
## .M564Q01 0.000
## .M571Q01 0.000
## .M603Q01 0.000
## .f1 0.000
##
## Thresholds:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## M192Q01|t1 0.089 0.075 -0.060 0.235 1.002 normal(0, .28)
## M406Q01|t1 0.139 0.074 -0.000 0.289 1.003 normal(0, .28)
## M423Q01|t1 -0.670 0.063 -0.794 -0.550 1.001 normal(0, .28)
## M496Q01|t1 -0.199 0.070 -0.342 -0.066 1.001 normal(0, .28)
## M564Q01|t1 -0.069 0.060 -0.186 0.046 1.000 normal(0, .28)
## M571Q01|t1 -0.181 0.071 -0.323 -0.042 1.002 normal(0, .28)
## M603Q01|t1 -0.206 0.071 -0.350 -0.069 0.999 normal(0, .28)
##
## Variances:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .M192Q01 1.000
## .M406Q01 1.000



Results III

## .M423Q01 1.000
## .M496Q01 1.000
## .M564Q01 1.000
## .M571Q01 1.000
## .M603Q01 1.000
## .f1 1.000
##
## Scales y*:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## M192Q01 0.776
## M406Q01 0.781
## M423Q01 0.948
## M496Q01 0.829
## M564Q01 0.911
## M571Q01 0.806
## M603Q01 0.822



Results

▶ The regression estimates imply a negative association between female and
proficiency, and a positive association between SES and proficiency.

▶ The posterior interval for the interaction overlaps with 0 but is mostly negative.

▶ The model is estimating two regression lines, one for female and one for non-female:
▶ Non-female: intercept 0, slope 0.442

▶ Female: intercept −0.202, slope 0.442 + (−0.199)

▶ (these are posterior means, there is also uncertainty in the estimates!)



Results I

▶ Graph of posterior mean regression lines, and posterior mean latent variables:
lvmeans <- blavInspect(m3fit, 'lvmeans')
dat$f1pred <- lvmeans[, 1]

regwts <- coef(m3fit)[grep("ˆf1~", names(coef(m3fit)))]
regdf <- cbind.data.frame(female = c(0, 1), int = c(0, regwts[1]), slp = c(regwts[2], sum(regwts[2:3])))

ggplot(dat, aes(x = hisei, y = f1pred)) + geom_point() + geom_abline(data = regdf, aes(slope = slp, intercept = int)) +
facet_wrap( ~ female, labeller = label_both) + xlab("SES") + ylab("Proficiency")



Results II
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Results I

▶ Same graph, but show regression lines from 50 posterior samples:
p <- ggplot(dat, aes(x = hisei, y = f1pred)) + geom_point() + facet_wrap( ~ female, labeller = label_both) +

xlab("SES") + ylab("Proficiency")

samps <- do.call("rbind", blavInspect(m3fit, 'mcmc'))
ndraws <- 50
regdf <- cbind.data.frame(female = rep(c(0, 1), ndraws), int = rep(0, ndraws * 2), slp = rep(0, ndraws * 2))
draws <- sample(1:nrow(samps), ndraws)
for (i in 1:length(draws)) {

regwts <- samps[draws[i], grep("ˆf1~", colnames(samps))]
regdf$int[i * 2] <- regwts[1]
regdf$slp[(i - 1)*2 + 1:2] <- c(regwts[2], sum(regwts[2:3]))

}

p + geom_abline(data = regdf, aes(slope = slp, intercept = int), alpha=.2)



Results II

female: 0 female: 1

−2 −1 0 1 2 −2 −1 0 1 2

−2

−1

0

1

2

SES

P
ro

fic
ie

nc
y



Results

▶ The previous graph shows an odd characteristic: the line for non-female is
constrained to go through (0,0)
▶ This is the intercept for non-females.

▶ This intercept is fixed to 0, because the mean of the latent variable is fixed to 0.

▶ This does not cause as many problems as one may expect, possibly because the 0
point on the latent variable was already arbitrarily set.

▶ One solution for addressing the issue: “center” female, so that both categories of this
variable are nonzero.

dat$female <- dat$female - .5



Model
▶ Re-estimating the model:

m4fit <- bsem(m3, data = dat, std.lv = TRUE, ordered = TRUE, dp = mypriors,
fixed.x = TRUE, save.lvs = TRUE)

##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.002033 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 20.33 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 1: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 1: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 1: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 1: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 1: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 1: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 1: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 1: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 1: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 1: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 1: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 66.246 seconds (Warm-up)
## Chain 1: 67.791 seconds (Sampling)
## Chain 1: 134.037 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.001978 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 19.78 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 2: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 2: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 2: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 2: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 2: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 2: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 2: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 2: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 2: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 2: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 2: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 68.224 seconds (Warm-up)
## Chain 2: 67.882 seconds (Sampling)
## Chain 2: 136.106 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.002013 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 20.13 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 3: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 3: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 3: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 3: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 3: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 3: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 3: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 3: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 3: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 3: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 3: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 67.418 seconds (Warm-up)
## Chain 3: 67.602 seconds (Sampling)
## Chain 3: 135.02 seconds (Total)
## Chain 3:
## Computing post-estimation metrics (including lvs if requested)...



Results I
summary(m4fit)

## blavaan 0.5.3.1253 ended normally after 1000 iterations
##
## Estimator BAYES
## Optimization method MCMC
## Number of model parameters 17
##
## Number of observations 565
##
## Statistic MargLogLik PPP
## Value NA 0.058
##
## Parameter Estimates:
##
## Parameterization Theta
##
## Latent Variables:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## f1 =~
## M192Q01 0.768 0.097 0.594 0.974 1.011 normal(.4, .2)
## M406Q01 0.750 0.091 0.577 0.940 1.003 normal(.4, .2)
## M423Q01 0.314 0.067 0.183 0.448 1.003 normal(.4, .2)
## M496Q01 0.626 0.081 0.473 0.787 1.006 normal(.4, .2)
## M564Q01 0.427 0.067 0.296 0.559 1.000 normal(.4, .2)
## M571Q01 0.695 0.090 0.527 0.882 1.001 normal(.4, .2)
## M603Q01 0.652 0.082 0.493 0.819 1.001 normal(.4, .2)
##
## Regressions:
## Estimate Post.SD pi.lower pi.upper Rhat Prior



Results II
## f1 ~
## female -0.241 0.114 -0.458 -0.019 1.001 normal(0,10)
## hisei 0.339 0.055 0.229 0.447 0.999 normal(0,10)
## female:hisei -0.199 0.108 -0.409 0.014 1.000 normal(0,10)
##
## Intercepts:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .M192Q01 0.000
## .M406Q01 0.000
## .M423Q01 0.000
## .M496Q01 0.000
## .M564Q01 0.000
## .M571Q01 0.000
## .M603Q01 0.000
## .f1 0.000
##
## Thresholds:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## M192Q01|t1 0.156 0.067 0.026 0.287 1.000 normal(0, .28)
## M406Q01|t1 0.207 0.067 0.078 0.342 1.000 normal(0, .28)
## M423Q01|t1 -0.645 0.060 -0.763 -0.532 1.003 normal(0, .28)
## M496Q01|t1 -0.143 0.061 -0.262 -0.020 1.000 normal(0, .28)
## M564Q01|t1 -0.030 0.056 -0.140 0.082 1.000 normal(0, .28)
## M571Q01|t1 -0.126 0.064 -0.245 -0.001 1.000 normal(0, .28)
## M603Q01|t1 -0.149 0.061 -0.267 -0.031 1.000 normal(0, .28)
##
## Variances:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .M192Q01 1.000
## .M406Q01 1.000



Results III

## .M423Q01 1.000
## .M496Q01 1.000
## .M564Q01 1.000
## .M571Q01 1.000
## .M603Q01 1.000
## .f1 1.000
##
## Scales y*:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## M192Q01 0.772
## M406Q01 0.779
## M423Q01 0.948
## M496Q01 0.830
## M564Q01 0.909
## M571Q01 0.802
## M603Q01 0.820



Results I

lvmeans <- blavInspect(m4fit, 'lvmeans')
dat$f1pred <- lvmeans[, 1]

p <- ggplot(dat, aes(x = hisei, y = f1pred)) + geom_jitter() + facet_wrap( ~ female, labeller = label_both) +
xlab("SES") + ylab("Proficiency")

samps <- do.call("rbind", blavInspect(m4fit, 'mcmc'))
ndraws <- 100
regdf <- cbind.data.frame(female = rep(c(-.5, .5), ndraws), int = rep(0, ndraws * 2), slp = rep(0, ndraws * 2))
draws <- sample(1:nrow(samps), ndraws)
for (i in 1:length(draws)) {

regwts <- samps[draws[i], grep("ˆf1~", colnames(samps))]
regdf$int[(i - 1)*2 + 1:2] <- regwts[1] * c(-.5, .5)
regdf$slp[(i - 1)*2 + 1:2] <- regwts[2] + regwts[3] * c(-.5, .5)

}

p + geom_abline(data = regdf, aes(slope = slp, intercept = int), alpha=.2)



Results II
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Results

▶ The previous graph represents uncertainty in the model’s regression parameters.

▶ But there is also uncertainty in the latent variables! This uncertainty is more
difficult to capture visually.

▶ One possibility: separate scatterplots for each posterior sample (which includes
latent variables).



Results I

## each panel represents one posterior sample
library("patchwork")

lvs <- do.call("rbind", blavInspect(m4fit, 'lvs'))
ndraws <- 6
draws <- sample(1:nrow(samps), ndraws)

ps <- vector("list", length(draws))

for (i in 1:ndraws) {
dat$f1pred <- lvs[draws[i], ]

regwts <- samps[draws[i], grep("ˆf1~", colnames(samps))]
regdf <- cbind.data.frame(female = c(-.5, .5), int = regwts[1] * c(-.5, .5), slp = regwts[2] + regwts[3] * c(-.5, .5))

ps[[i]] <- ggplot(dat, aes(x = hisei, y = f1pred)) + geom_jitter() +
geom_abline(data = regdf, aes(slope = slp, intercept = int)) +
facet_wrap( ~ female, labeller = label_both) +
xlab("SES") + ylab("Proficiency")

}

Reduce("+", ps)



Results II
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Summary

▶ The blavaan framework facilitates extension of traditional IRT models to
explanatory IRT models.

▶ The graphical capabilities of R help us find modeling problems/issues that may be
difficult or impossible to find by staring at text output.

▶ In turn, these attributes help us to best characterize the implications of the model
for the observed data.



Case 4: Multilevel SEM



Multilevel SEM

▶ Goals of this section:
▶ Consider two-level SEM as a model of data, vs a model of a covariance matrix

▶ Consider model checking in light of the data model

▶ See how it works with real data



Basics



Multilevel SEM

▶ Why use two-level SEM?
▶ We are doing SEM, but observations (people) are nested within a grouping variable.

▶ For example, many variables are collected on each student, and students are nested
within schools.

▶ Now we can separate covariance between schools from covariance within schools, and
have a model on each.



Two-level SEM

▶ Two-level SEM comes in at least two flavors, “random intercept” and “random
slope”.

▶ The terms “random intercept” and “random slope” are confusing (to me) because
you (= I) would expect them to be the same as univariate multilevel models. But
they are generally different.

▶ Also, the term “two-level” is not necessarily what you would expect. Multilevel
people might call it “three-level” (multiple responses within person within school).



Two-level SEM

▶ Let yijk be the score of person i in school k on variable j .

▶ It is easy to see the random intercept when you write the model like this:

yik = νk + Λ ik + eik

 ik = α + B ik + ϵik

νk = ν0 + uk

▶ We can view uk as a vector of random effects for school k. Each observed variable
j will have a separate random effect for each school k. We can jointly model the
collection of random efects for school k.



Two-level SEM

▶ Let uk be the vector of intercept random effects for school k.

▶ The easiest thing is to do is model it as an unrestricted multivariate normal.

▶ This can be problematic when there are many observed variables. For example, if
there are 8 observed variables, then unrestricted MVN adds 36 covariance
parameters to estimate.



Two-level SEM

▶ Instead of unrestricted multivariate normal, It is common to model uk using a
second structural equation model of schools.

▶ Now we have school latent variables influencing the value of the school’s intercept.
It is another full model on top of what we already had.

uk = νc + Λc�k + ec
k

�k = αc + Bc�k + ϵc
k



Two-level SEM

▶ Altogether

yik = νk + Λ i + ei

 i = α + B i + ϵi

νk = ν0 + uk

uk = νc + Λc�k + ec
k

�k = αc + Bc�k + ϵc
k



Flavors

▶ For random intercept models, the school-level model neatly separates from the
student-level model.

▶ For random slope models, we get normal random variables multiplied by other
normal random variables, which makes the likelihood evaluation difficult. This leads
to fewer software options for reliably estimating the models.



Estimation

▶ The frequentist version of the model integrates out latent variables, as in the
one-level case.

▶ But this can be problematic because, once you integrate out latent variables, all
observed variables in a school are correlated.

▶ So you end up with a multivariate normal likelihood of high dimension.



Estimation

▶ Brief example: Say 20 students are observed in each of 200 schools. Each student
is measured on 4 variables.

▶ So across all 20 students in a school, we have 80 observed variables.

▶ If we integrate out latent variables, our model likelihood involves an 80-dimensional
multivariate normal. If your model forces you to obtain inverses and determinants
of 80 × 80 matrices, you do not have a happy life.



Estimation

▶ This problem was addressed since at least the late 80s (e.g., McDonald & Goldstein,
1989 and others). For this example, we can re-express the 80-dimensional likelihood
in a way that involves only 4 × 4 matrices.

▶ Idea: Instead of raw data, compute many descriptive statistics, including sample
means within each school, sample means across schools, covariances within each
school, covariances between schools, number of students within each school. The
likelihood can be written as a function of all these things.

▶ A nice, detailed discussion of these results is in Rosseel (2021).



Example



Example

▶ PISA 2003 data, student and school predictors of math achievement.
▶ 9,729 students in 359 schools

▶ Student variables: enjoyment of math (4 indicators), math achievement, perception of
teacher support

▶ School variable: teacher enthusiasm (3 indicators)

▶ The data were used by Rockwood (2020), https://osf.io/pxz5s/

https://osf.io/pxz5s/


Model

▶ blavaan model specification:
m5 <- '

level: within
fw =~ enjoy1 + enjoy2 + enjoy3 + enjoy4
math ~ fw + support

level: between
fenth =~ enth1 + enth2 + enth3
fenj =~ enjoy1 + enjoy2 + enjoy3 + enjoy4
math ~ fenth + fenj + support

'



Model

▶ What does it mean?
▶ Enjoyment of math is latent at the student and school level. The school has an

influence on all students’ math enjoyments, separately from an individual student’s
enjoyment.

▶ Teacher enthusiasm variables are measured once per school. So the latent variable is
at the school level.

▶ Student perception of support is split into a student component and school
component. “latent mean centering”

▶ We regress latent variables, along with student perception of support, on math
achievement.



Priors

▶ Once again, we seek mildly informative prior distributions. It helps to know more
about the variables:
▶ math: generally assumes values between 0 and 10

▶ enjoy, enth variables: ratings from 1 to 4

▶ support: scaled and centered around 0



Priors

▶ We will identify the model by fixing one loading per latent variable to 1, and we
expect all loadings to be positive. So the prior for free loadings will be Normal(1,
.5).

▶ Based on our variables, it would be surprising if any variances were much higher
than 1. So Gamma(.5, .5) on SDs.

▶ Also based on our variables, it would be surprising if regression weights were much
larger than 2. And we want to regularize towards 0. So Normal(0, 1).

mypris <- dpriors(lambda = "normal(1, .5)", theta = "gamma(.5, .5)[sd]",
psi = "gamma(.5, .5)[sd]", beta = "normal(0, 1)")



Estimation
▶ Estimation is similar to before, with addition of the cluster argument:

m5fit <- bsem(m5, data = dat, dp = mypris, cluster = "school", save.lvs = TRUE)

## blavaan NOTE: two-level models are new, please report bugs!
## https://github.com/ecmerkle/blavaan/issues
##
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.003565 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 35.65 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 1: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 1: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 1: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 1: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 1: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 1: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 1: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 1: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 1: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 1: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 1: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 106.644 seconds (Warm-up)
## Chain 1: 143.651 seconds (Sampling)
## Chain 1: 250.295 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 0.003242 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 32.42 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 2: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 2: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 2: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 2: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 2: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 2: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 2: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 2: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 2: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 2: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 2: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 125.367 seconds (Warm-up)
## Chain 2: 119.54 seconds (Sampling)
## Chain 2: 244.907 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.003367 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 33.67 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 1500 [ 0%] (Warmup)
## Chain 3: Iteration: 150 / 1500 [ 10%] (Warmup)
## Chain 3: Iteration: 300 / 1500 [ 20%] (Warmup)
## Chain 3: Iteration: 450 / 1500 [ 30%] (Warmup)
## Chain 3: Iteration: 501 / 1500 [ 33%] (Sampling)
## Chain 3: Iteration: 650 / 1500 [ 43%] (Sampling)
## Chain 3: Iteration: 800 / 1500 [ 53%] (Sampling)
## Chain 3: Iteration: 950 / 1500 [ 63%] (Sampling)
## Chain 3: Iteration: 1100 / 1500 [ 73%] (Sampling)
## Chain 3: Iteration: 1250 / 1500 [ 83%] (Sampling)
## Chain 3: Iteration: 1400 / 1500 [ 93%] (Sampling)
## Chain 3: Iteration: 1500 / 1500 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 81.537 seconds (Warm-up)
## Chain 3: 95.533 seconds (Sampling)
## Chain 3: 177.07 seconds (Total)
## Chain 3:
## Computing post-estimation metrics (including lvs if requested)...
## Error in chol.default(L) : the leading minor of order 2 is not positive



Results I
summary(m5fit)

## blavaan 0.5.3.1253 ended normally after 1000 iterations
##
## Estimator BAYES
## Optimization method MCMC
## Number of model parameters 38
##
## Number of observations 9729
## Number of clusters [school] 359
##
## Statistic MargLogLik PPP
## Value -70123.647 0.348
##
## Parameter Estimates:
##
##
##
## Level 1 [within]:
##
## Latent Variables:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## fw =~
## enjoy1 1.000
## enjoy2 0.900 0.011 0.879 0.921 1.000 normal(1, .5)
## enjoy3 1.162 0.013 1.137 1.186 1.001 normal(1, .5)
## enjoy4 0.871 0.012 0.849 0.894 1.000 normal(1, .5)
##
## Regressions:
## Estimate Post.SD pi.lower pi.upper Rhat Prior



Results II
## math ~
## fw 0.665 0.025 0.616 0.712 0.999 normal(0, 1)
## support -0.102 0.016 -0.134 -0.070 1.000 normal(0, 1)
##
## Intercepts:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .enjoy1 0.000
## .enjoy2 0.000
## .enjoy3 0.000
## .enjoy4 0.000
## .math 0.000
## fw 0.000
##
## Variances:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .enjoy1 0.252 0.005 0.242 0.261 1.000 gamma(.5, .5)[sd]
## .enjoy2 0.213 0.004 0.206 0.221 0.999 gamma(.5, .5)[sd]
## .enjoy3 0.156 0.004 0.147 0.164 1.000 gamma(.5, .5)[sd]
## .enjoy4 0.315 0.005 0.304 0.325 1.000 gamma(.5, .5)[sd]
## .math 2.168 0.032 2.105 2.232 1.000 gamma(.5, .5)[sd]
## fw 0.465 0.010 0.444 0.486 1.000 gamma(.5, .5)[sd]
##
##
## Level 2 [school]:
##
## Latent Variables:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## fenth =~
## enth1 1.000
## enth2 0.983 0.114 0.778 1.232 1.001 normal(1, .5)



Results III
## enth3 0.624 0.085 0.460 0.793 1.001 normal(1, .5)
## fenj =~
## enjoy1 1.000
## enjoy2 0.862 0.088 0.690 1.040 1.000 normal(1, .5)
## enjoy3 1.085 0.095 0.909 1.300 1.002 normal(1, .5)
## enjoy4 0.946 0.100 0.761 1.150 1.000 normal(1, .5)
##
## Regressions:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## math ~
## fenth 0.374 0.113 0.159 0.608 1.001 normal(0, 1)
## fenj 1.777 0.452 0.909 2.689 1.002 normal(0, 1)
## support -0.516 0.131 -0.766 -0.267 1.000 normal(0, 1)
##
## Covariances:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## fenth ~~
## fenj 0.006 0.005 -0.004 0.016 0.999 beta(1,1)
##
## Intercepts:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .enth1 2.931 0.029 2.874 2.988 1.000 normal(0,32)
## .enth2 3.093 0.027 3.040 3.145 1.000 normal(0,32)
## .enth3 3.134 0.028 3.078 3.187 1.000 normal(0,32)
## .enjoy1 2.061 0.012 2.039 2.085 1.002 normal(0,32)
## .enjoy2 1.873 0.011 1.852 1.894 1.003 normal(0,32)
## .enjoy3 2.172 0.012 2.148 2.196 1.002 normal(0,32)
## .enjoy4 2.557 0.012 2.534 2.580 1.002 normal(0,32)
## .math 4.868 0.043 4.781 4.951 1.000 normal(0,10)
## fenth 0.000



Results IV

## fenj 0.000
##
## Variances:
## Estimate Post.SD pi.lower pi.upper Rhat Prior
## .enth1 0.126 0.020 0.086 0.164 1.003 gamma(.5, .5)[sd]
## .enth2 0.082 0.018 0.045 0.117 1.002 gamma(.5, .5)[sd]
## .enth3 0.228 0.018 0.195 0.264 1.000 gamma(.5, .5)[sd]
## .enjoy1 0.001 0.001 0.000 0.004 1.000 gamma(.5, .5)[sd]
## .enjoy2 0.004 0.001 0.002 0.006 1.000 gamma(.5, .5)[sd]
## .enjoy3 0.003 0.001 0.000 0.005 1.007 gamma(.5, .5)[sd]
## .enjoy4 0.007 0.002 0.004 0.010 1.000 gamma(.5, .5)[sd]
## .math 0.413 0.044 0.332 0.507 1.001 gamma(.5, .5)[sd]
## fenth 0.169 0.027 0.120 0.226 1.003 gamma(.5, .5)[sd]
## fenj 0.019 0.004 0.012 0.026 1.000 gamma(.5, .5)[sd]



Within Relationship I

## Visualize person-level relationship between enjoyment and achievement:
lvmeans <- blavInspect(m5fit, "lvmeans")
dat$lvmeans <- lvmeans[, 1]

schmath <- with(dat, tapply(math, school, mean))
dat$schmath <- schmath[match( dat$school, as.numeric(names(schmath)) )]
dat$math_within <- dat$math - dat$schmath

ggplot(dat, aes(x = lvmeans, y = math_within)) + geom_point() + xlab("Enjoyment (person lv)") +
ylab("Math Achievement (person)")



Within Relationship II
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Between Relationship I

## Visualize school-level relationship betwen enjoyment and achievement:
lv2 <- blavInspect(m5fit, "lvmeans", level = 2)

## ensure the school means are ordered in the same way that blavaan orders clusters
schmath <- schmath[ match(blavInspect(m5fit, 'cluster.id'), as.numeric(names(schmath))) ]

l2dat <- cbind.data.frame(schmath, lv2)
ggplot(l2dat, aes(x = fenj, y = schmath)) + geom_point() + xlab("Enjoyment (school lv)") +

ylab("Math Achievement (school)")



Between Relationship II
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Summary

▶ Our modeling strategies transferred over to two-level SEM, with few changes.

▶ If we are careful, we can use our posterior samples to visualize results that are
typically only summarized in tables.

▶ Checks and summaries from earlier examples are also applicable!



General Recommendations & Commentary



Workflow

▶ Some general workflow recommendations:
▶ Use frequentist models as quick checks of syntax/model ideas.

▶ Consider your prior distributions, and do prior predictive checks.

▶ Arguments burnin = 100, sample = 100 is sufficient for rough results of many
blavaan models (target = "stan" only).

▶ Consider meaningful summaries of how the posterior distribution corresponds to the
observed data, based on the goals of your model.



Workflow

▶ Related to the previous slide: tailor models and summaries to your substantive
goals.
▶ Use traditional SEM as a lauching point for tailored models and tailored model checks.

▶ Posterior samples allow us to summarize uncertainty in most quantities of interest
(e.g., item-total correlations).

▶ Recipes can be helpful, but also limiting. Some coding skills can take you far.



Limitations

▶ The examples presented here “just worked.” We continue to improve blavaan to
“just work” on more datasets. Some models/datasets currently won’t work so well,
including:
▶ Observed variables that assume large values, with no consideration of priors (lack of

model convergence).

▶ Large amounts of missing data, large numbers of observed variables (slow).

▶ Inclusion of reverse-coded items: must carefully consider whether priors on loadings
match sign constraints on loadings.



Advanced Topics



Advanced Topics

▶ Speeding up Stan

▶ Extending blavaan models

▶ Future developments



Speed

▶ MCMC can be very slow. For different types of MCMC, the speed issue manifests
itself differently.
▶ Gibbs, Metropolis Hastings: Need to draw a huge number of samples due to

autocorrelation of posterior samples.

▶ Hamiltonian: Fewer samples are often needed (less autocorrelation), but gradient
computations (autodiff) also required.



Speed

▶ Focusing on Stan and Hamiltonian Monte Carlo, we can see speed and efficiency
improvements by reducing the number of model parameters.

▶ This is especially relevant for SEM:
▶ In traditional MCMC estimation, the latent variables are model parameters. This leads

to conditional independence and univariate likelihoods, as opposed to multivariate
likelihoods.

▶ But every person in the data has unique latent variables, so we are adding hundreds of
model parameters. This can be burdensome.



Speed

▶ This means we can speed up Stan by specifying models that look similar to
frequentist models:
▶ Use of sufficient statistics: instead of looping over every person, evaluate one

likelihood that involves sample mean and sample covariance matrix.

▶ Likelihoods that are marginal over latent variables.

▶ For sampling latent variables: derive conditional distribution of latents given observed,
sample in generated quantities block.



Limitations

▶ Limitation to this approach: difficulty in extending the model.
▶ For example, if our latent variables are not multivariate normal, then we cannot easily

marginalize over the latent variables.

▶ Also, non-normal observed variables are not easily incorporated.

▶ So there is a tradeoff between fast estimation of traditional models, vs easy extension
to non-traditional models.



Extensions

▶ But it is possible to extend blavaan models:
▶ Use mcmcfile = TRUE to export the Stan (or JAGS) model and data.

▶ Easy Stan changes include prior distributions, and parameter constraints.

▶ For other changes, consider target = "jags". The model is tailored to your
requested model and samples latent variables.



Future Developments

▶ Near term additions: Structural after measurement approach, refining two-level
SEM.

▶ Longer term: Two-level ordinal, random slopes.

▶ General principle: No new features that cannot be easily tested. (i.e., I don’t want
to wait hours to see whether a model worked)



Questions

▶ Questions/comments



Thank you!

In R:

install.packages("blavaan")

blavaan website:

https://ecmerkle.github.io/blavaan/

https://ecmerkle.github.io/blavaan/
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