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Abstract

The issue of measurement invariance commonly arises in factor-analytic contexts, with
methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and
Wald tests. These tests all require advance definition of the number of groups, group
membership, and offending model parameters. In this paper, we study tests of
measurement invariance based on stochastic processes of casewise derivatives of the
likelihood function. These tests can be viewed as generalizations of the Lagrange
multiplier test, and they are especially useful for: (1) identifying subgroups of individuals
that violate measurement invariance along a continuous auxiliary variable without
prespecified thresholds, and (2) identifying specific parameters impacted by measurement
invariance violations. The tests are presented and illustrated in detail, including an
application to a study of stereotype threat and simulations examining the tests’ abilities
in controlled conditions.
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Tests of measurement invariance without subgroups:
A generalization of classical methods

The assumption that parameters are invariant across observations is a fundamental
tenet of many statistical models. A specific type of parameter invariance, measurement
invariance, has implications for the general design and use of psychometric scales. This
concept is particularly important because violations can render the scales difficult to
interpret. That is, if a set of scales violates measurement invariance, then individuals with
the same “amount” of a latent variable may systematically receive different scale scores.
This may lead researchers to conclude subgroup differences on a wide variety of interesting
constructs when, in reality, the scales impact the magnitude of the differences. Further, it
can be inappropriate to incorporate scales violating measurement invariance into
structural equation models, where relationships between latent variables are hypothesized.
Horn and McArdle (1992) concisely summarize the impact of these issues, stating “Lack of
evidence of measurement invariance equivocates conclusions and casts doubt on theory in
the behavioral sciences” (p. 141). Borsboom (2006) further notes that researchers often
fail to assess whether measurement invariance holds.

In this paper, we apply a family of statistical tests based on stochastic processes to
the assessment of measurement invariance. The tests are shown to have useful advantages
over existing tests. We begin by developing a general framework for the tests, including
discussion of theoretical results relevant to the proposed tests and comparison of the
proposed tests to the existing tests. Next, we study the proposed tests’ abilities through
example and simulation. Finally, we discuss some interesting extensions of the tests.
Throughout the manuscript, we use the term test to refer to a statistical test and the term
scale to refer to a psychometric test or scale.

Framework

The methods proposed here are generally relevant to situations where the
p-dimensional random variable X with associated observations xi, i = 1, . . . , n is specified
to arise from a model with density f(xi;θ) and associated joint log-likelihood

`(θ;x1, . . . ,xn) =

n∑
i=1

`(θ;xi) =

n∑
i=1

log f(xi;θ), (1)

where θ is some k-dimensional parameter vector that characterizes the distribution. The
methods are applicable under very general conditions, essentially whenever standard
assumptions for maximum likelihood inference hold (for more details see below). For the
measurement invariance applications considered in this paper, we employ a factor analysis
model with assumed multivariate normality:

f(xi;θ) =
1

(2π)p/2|Σ(θ)|1/2
exp

{
−1

2
(xi − µ(θ))>Σ(θ)−1(xi − µ(θ))

}
, (2)

`(θ;xi) = −1

2

{
(xi − µ(θ))>Σ(θ)−1(xi − µ(θ)) + log |Σ(θ)| + p log(2π)

}
, (3)



Tests of measurement invariance without subgroups 4

with model-implied mean vector µ(θ) and covariance matrix Σ(θ). As pointed out above,
the assumptions for the tests introduced here do not require this specific form of the
likelihood, but it is presented for illustration due to its importance in practice.

Many expositions of factor analysis utilize the likelihood for the sample covariance
matrix (instead of the likelihood of the individual observations xi), employing a Wishart
distribution. However, in that approach the sample covariance matrix can also be
disaggregated to the sum of its individual-specific contributions, leading essentially to a
likelihood like (2) with multivariate normal observations xi. This situation is similar to
that encountered in structural equation models with missing data (e.g., Wothke, 2000).

Within the general framework outlined above and under the usual regularity
conditions (e.g., Ferguson, 1996), the model parameters θ can be estimated by maximum
likelihood (ML), i.e.,

θ̂ = argmax
θ

`(θ;x1, . . . , xn), (4)

or equivalently by solving the first order conditions

n∑
i=1

s(θ̂;xi) = 0, (5)

where

s(θ;xi) =

(
∂`(θ;xi)

∂θ1
, . . . ,

∂`(θ;xi)

∂θk

)>
, (6)

is the score function of the model, i.e., the partial derivative of the casewise likelihood
contributions w.r.t. the parameters θ. Evaluation of the score function at θ̂ for i = 1, . . . , n
essentially measures the extent to which each individual’s likelihood is maximized.

One central assumption – sometimes made implicitly – is that the same model
parameters θ hold for all individuals i = 1, . . . , n. If this is not satisfied, the estimates θ̂
are typically not meaningful and cannot be easily interpreted. One potential source of
deviation from this assumption is lack of measurement invariance, investigated in the
following section.

Tests of Measurement Invariance

In general terms, a set of scales is defined to be measurement invariant with respect
to an auxiliary variable V if:

f(xi|ti, vi, . . . ) = f(xi|ti, . . . ), (7)

where xi is the data vector for individual i, ti is the latent variable for individual i that
the scales purport to measure, and f is the model’s distributional form (Mellenbergh,
1989). We adopt a parametric, factor-analytic framework here, so that the above equation
being true for all V implies that the measurement parameters are equal across individuals
and, thus, do not vary with any V (Meredith, 1993).

To frame this as a formal hypothesis, we assume that – in principle – Model (1)
holds for all individuals but with a potentially individual-specific parameter vector θi.
The null hypothesis of measurement invariance is then equivalent to the null hypothesis of
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parameter constancy
H0 : θi = θ0, (i = 1, . . . , n), (8)

which should be tested against the alternative that the parameters are some nonconstant
function θ(·) of the variable V with observations v1, . . . , vn, i.e.,

H1 : θi = θ(vi), (i = 1, . . . , n). (9)

where the pattern θ(V ) of deviation from measurement invariance is typically not known
(exactly) in practice. If it were (see below for some concrete examples), then standard
inference methods – such as likelihood ratio, Wald, or Lagrange multiplier tests – could be
employed. However, if the pattern is unknown, it is difficult to develop a single test that is
well-suited for all conceivable patterns. But it is possible to derive a family of tests so that
representatives from this family are well-suited for a wide range of possible patterns. One
pattern of particular interest involves V dividing the individuals into two subgroups with
different parameter vectors

H∗1 : θi =

{
θ(A) if vi ≤ ν,
θ(B) if vi > ν,

(10)

where θ(A) 6= θ(B). This could pertain to two different age groups, income groups,
genders, etc.

Note that even when adopting H∗1 as the relevant alternative, the pattern θ(V ) is
not completely specified unless the cutpoint ν is known in advance (i.e., unless there is
observed heterogeneity). In this situation, all individuals can be grouped based on V , and
we can apply standard theory: nested multiple group models (e.g., Jöreskog, 1971; Bollen,
1989) coupled with likelihood ratio (LR) tests are most common, although the
asymptotically equivalent Lagrange multiplier (LM) tests (also known as score tests) and
Wald tests may also be used for this purpose (see Satorra, 1989). If ν is unknown (as is
often the case for continuous V ), however, then there is unobserved heterogeneity and
standard theory is not easily applied. Nonstandard inference methods, such as those
proposed in this paper, are then required.

In the following section, we describe the standard approaches to testing
measurement invariance with ν known. We then contrast these approaches with the tests
proposed in this paper. We assume throughout that the observations i = 1, . . . , n are
ordered with respect to the random variable V of interest such that v1 ≤ v2 ≤ · · · ≤ vn.
We also assume that the measurement model is correctly specified, as is implicitly
assumed under traditional measurement invariance approaches. In particular, violations of
normality may lead to spurious results in the proposed tests just as they do in other
approaches (e.g., Bauer & Curran, 2004).

Likelihood Ratio, Wald, and Lagrange Multiplier Test for Fixed Subgroups

To employ the LR test for assessing measurement invariance, model parameters are
estimated separately for a certain number of subgroups of the data (with some parameters
potentially restricted to be equal across subgroups). For ease of exposition, we describe
the case where there are no such parameter restrictions; as shown in the example and
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simulation below, however, it is straightforward to extend all methods to the more general
case. After fitting the model to each subgroup, the sum of maximized likelihoods from the
subgroups are compared with the original maximized full-sample likelihood in a χ2 test.
For the special case of two subgroups, the alternative H∗1 from (10) with fixed and
prespecified ν is adopted and the null hypothesis H0 from (8) reduces to θ(A) = θ(B). The
parameter estimates θ̂(A) can then be obtained from the observations i = 1, . . . ,m, say, for
which vi ≤ ν. Analogously, θ̂(B) is obtained by maximizing the likelihood for the
observations i = m+ 1, . . . , n, for which vi > ν. The LR test statistic for the given
threshold ν is then

LR(ν) = −2
[
`(θ̂;x1, . . . , xn) − {`(θ̂(A);x1, . . . , xm) + `(θ̂(B);xm+1, . . . , xn)}

]
, (11)

which, when the null hypothesis holds, has an asymptotic χ2 with degrees of freedom
equal to the number of parameters in θ.

Analogously to the LR test, the Wald test and LM test can be employed to test the
null hypothesis H∗1 for a fixed threshold ν. For the Wald test, the idea is to compute the
Wald statistic W (ν) as a quadratic form in θ̂(A) − θ̂(B), utilizing its estimated covariance
matrix for standardization. For the LM test, the LM statistic LM (ν) is a quadratic form
in s(θ̂;x1, . . . , xm) and s(θ̂;xm+1, . . . , xn). Thus, the three tests all assess differences that
should be zero under H0: for the LR test the difference of maximized likelihoods; for the
Wald test, the difference of parameter estimates; and for the LM test, the differences of
likelihood scores from zero. In the LR case, the parameters have to be estimated under
both the null hypothesis and alternative. Conversely, the Wald case requires only the
estimates under the alternative, while the LM case requires only the estimates under the
null hypothesis.

Extensions for Unknown Subgroups

For assessing measurement invariance in psychometric models, the major limitation
of the three tests is that the potential subgroups have to be known in advance. Even if the
scales are known to violate measurement invariance w.r.t. the variable V , the threshold ν
from (10) is often unknown in practice. For example, if V represents yearly income, there
are many possible values of ν that could be used to divide individuals into poorer and
richer groups. The ultimate ν that we choose could potentially impact our conclusions
about whether or not a scale is measurement invariant, in the same way that
dichotomization of continuous variables impacts general psychometric analyses
(MacCallum, Zhang, Preacher, & Rucker, 2002).

Instead of choosing a specific ν, a natural idea is to compute LR(ν) for each possible
value in some interval [ν, ν] and reject if their maximum

max
ν∈[ν,ν]

LR(ν) (12)

becomes large. Note that this corresponds to maximizing the likelihood w.r.t. an
additional parameter, namely ν. Hence, the asymptotic distribution of the maximum LR
statistic is not χ2 anymore. Andrews (1993) showed that the asymptotic distribution is in
fact tractable but nonstandard. Specifically, the asymptotic distribution of (12) is the
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maximum of a certain tied-down Bessel process whose specifics also depend on the
minimal and maximal thresholds ν and ν, respectively. See Andrews for the original
results and further references, and see below for more details on the results’ application to
measurement invariance.

Analogously, one can consider maxW (ν) and max LM (ν), respectively, which both
have the same asymptotic properties as max LR(ν) and are asymptotically equivalent
(Andrews, 1993). From a computational perspective, the max LM (ν) test is particularly
convenient because it requires just a single set of estimated parameters θ̂ which is
employed for all thresholds ν in [ν, ν]. The other two tests require reestimation of the
subgroup models for each ν.

So far, the discussion focused on the alternative H∗1 : The maximum LR, Wald, and
LM tests are designed for a situation where there is a single threshold at which all
parameters in the vector θ change. While this is plausible and intuitive in many
applications, it would also be desirable to obtain tests that direct their power against
other types of alternatives, i.e., against H1 with other patterns θ(V ). For example, the
parameters may fluctuate randomly or there might be multiple thresholds at which the
parameters change. Alternatively, only one (or just a few) of the parameters in the vector
θ may change while the remaining parameters are constant (a common occurrence in
psychometric models). To address such situations in a unified way, the next section
contains a general framework for testing measurement invariance along a (continuous)
variable V that includes the maximum LM test as a special case.

Stochastic Processes for Measurement Invariance

As discussed above, factor analysis models are typically estimated by fitting the
model to all i = 1, . . . , n individuals, assuming that the parameter vector θ is constant
across individuals. Having estimated the parameters θ̂, the goal is to check that all
subgroups of individuals conform with the model (for all of the parameters). Hence, some
measure of model deviation or residual is required that captures the lack of fit for the i-th
individual at the j-th parameter (i = 1, . . . , n, j = 1, . . . , k). A natural measure – that
employs the ideas of the LM test – is s(θ̂;xi)j : the j-th component of the contribution of
the i-th observation to the score function. By construction, the sum of the score
contributions over all individuals is zero for each component; see (5). Moreover, if there
are no systematic deviations, the score contributions should fluctuate randomly around
zero. Conversely, the score contributions should be shifted away from zero for subgroups
where the model does not fit.

Therefore, to employ this quantity for tests of measurement invariance against
alternatives of type (9), we need to overcome two obstacles: (1) make use of the ordering
of the observations w.r.t. V because we want to test for changes “along” V ; (2) account
for potential correlations between the k components of the parameters to be able to detect
which parameter(s) change (if any).

Theory

The test problem of the null hypothesis (8) against the alternatives (9) and (10),
respectively, has been studied extensively in the statistics and econometrics literature
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under the label “structural change tests” (see e.g., Brown, Durbin, & Evans, 1975;
Andrews, 1993) where the focus of interest is the detection of parameter instabilities of
time series models “along” time. Specifically, it has been shown (e.g., Nyblom, 1989;
Hansen, 1992; Hjort & Koning, 2002; Zeileis & Hornik, 2007) that cumulative sums of the
empirical scores follow specific stochastic processes, allowing us to use them to generally
test measurement invariance. Here, we review some of the main results from that
literature and adapt it to the specific challenges of factor analysis models. More detailed
accounts of the underlying structural change methods include Hjort and Koning (2002)
and Zeileis and Hornik (2007).

For application to measurement invariance, the most important theoretical result
involves the fact that, under H0 in (8), the cumulative score process converges to a specific
asymptotic process. The k-dimensional cumulative score process is defined as

B(t; θ̂) = Î−1/2n−1/2

bntc∑
i=1

s(θ̂;xi) (0 ≤ t ≤ 1) (13)

where bntc is the integer part of nt and Î is some consistent estimate of the covariance
matrix of the scores, e.g., their outer product or the observed information matrix. The
k dimensions of the process arise from the fact that a separate cumulative score is
maintained for each of the k model parameters. As the equation shows, the cumulative
score process adds subsets of casewise score contributions across individuals along the
ordering w.r.t. the variable V of interest. At t = 1/n, only the first individual’s
contribution enters into the summation; at t = 2/n, the first two individuals’ contributions
enter into the summation, etc., until t = n/n where all contributions enter into the
summation. Thus, due to (5), the cumulative score process always equals zero at t = 0
and returns to zero at t = 1. Furthermore, multiplication by Î−1/2 “decorrelates” the
k cumulative score processes, such that each univariate process (i.e., each process for a
single model parameter) is unrelated to (and asymptotically independent of) all other
processes. Therefore, this cumulative process B(t; θ̂) accomplishes the challenges discussed
at the beginning of this section: it makes use of the ordering of the observations by taking
cumulative sums, and it decorrelates the contributions of the k different parameters.

Inference can then be based on an extension of the usual central limit theorem.
Under the assumption of independence of individuals (implicit already in Equation 1) and
under the usual ML regularity conditions (assuring asymptotic normality of θ̂), Hjort and
Koning (2002) show that

B(·; θ̂)
d→ B0(·), (14)

where
d→ denotes convergence in distribution and B0(·) is a k-dimensional Brownian

bridge. In words, there are k cumulative score processes, one for each model parameter.
This collection of processes follows a multidimensional Brownian bridge as score
contributions accumulate in the summation from individual 1 (with lowest value of V ) to
individual n (with highest value of V ).

The empirical cumulative score process from (13) can also be viewed as an n× k
matrix with elements B(i/n; θ̂)j that we also denote B(θ̂)ij below for brevity. That is,

assuming that individuals are ordered by V , the first row of B(θ̂) corresponds to the first
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individual’s decorrelated scores. The second row of B(θ̂) corresponds to the sum of the
first two individuals’ scores, etc., until the last row of B(θ̂) corresponds to the sum of all
individuals’ scores (which will be a row of zeroes). Under this setup, each column of B(θ̂)
converges to a univariate Brownian bridge and pertains to a single factor analysis
parameter. To carry out a test of H0, the process/matrix needs to be aggregated to a
scalar test statistic by collapsing across rows (individuals) and columns (parameters) of
the matrix. The asymptotic distribution of this test statistic is then easily obtained by
applying the same aggregation to the asymptotic Brownian bridge (Hjort & Koning, 2002;
Zeileis & Hornik, 2007), so that corresponding p-values can be derived.

As argued above, no single aggregation function will have high power for all
conceivable patterns of measurement invariance θ(V ), while any (reasonable) aggregation
function will have non-trivial power under H1. Thus, various aggregation strategies should
be employed depending on which pattern θ(V ) is most plausible (because the exact
pattern is typically unknown). A particularly agnostic aggregation strategy is to reject H0

if any component of the cumulative score process B(t; θ̂) strays “too far” from zero at any
time, i.e., if the double maximum statistic

DM = max
i=1,...,n

max
j=1,...,k

|B(θ̂)ij |, (15)

becomes large. In determining where in B(θ̂) this maximum occurred, we are able to
determine threshold(s) of parameter change (over the individuals i = 1, . . . , n) and the
parameter(s) affected by it (over j = 1, . . . , k). This test is especially useful for
visualization, as the cumulative score process for each individual parameter can be
displayed along with the appropriate critical value. For an example of this see Figure 3 (in
the “Example” section) which shows the cumulative score processes for three factor
loadings along with the critical values at 5% level.

However, taking maximums “wastes” power if many of the k parameters change at
the same threshold, or if the score process takes large values for many of the n individuals
(and not just a single threshold). In such cases, sums instead of maxima are more suitable
for collapsing across parameters and/or individuals, because they combine the deviations
instead of picking out only the single largest deviation. Thus, if the parameter instability
θ(V ) affects many parameters and leads to many subgroups, sums of (absolute or
squared) values should be used for collapsing both across parameters and individuals. On
the other hand, if there is just a single threshold that affects multiple parameters, then
the natural aggregation is by sums over parameters and then by the maximum over
individuals. More precisely, the former idea leads to a Cramér-von Mises type statistic
and the latter to the maximum LM statistic from the previous section:

CvM = n−1
∑

i=1,...,n

∑
j=1,...,k

B(θ̂)2
ij , (16)

max LM = max
i=i,...,ı

{
i

n

(
1− i

n

)}−1 ∑
j=1,...,k

B(θ̂)2
ij , (17)

where the max LM statistic is additionally scaled by the asymptotic variance t(1− t) of
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the process B(t, θ̂). It is equivalent to the maxν LM (ν) statistic from the previous section,
provided that the boundaries for the subgroups sizes i/ν and ı/ν are chosen analogously.
Further aggregation functions have been suggested in the structural change literature (see
e.g., Zeileis, 2005; Zeileis, Shah, & Patnaik, 2010) but the three tests above are most likely
to be useful in psychometric settings.

Finally, all tests can be easily modified to address the situation of so-called “partial
structural changes” (Andrews, 1993). This refers to the case of some parameters being
known to be stable, i.e., restricted to be constant across potential subgroups. Tests for
potential changes/instabilities only in the k∗ remaining parameters (from overall k
parameters) are easily obtained by omitting those k − k∗ columns from B(θ̂)ij that are
restricted/stable, retaining only those k∗ columns that are potentially unstable. This may
be of special interest to those wishing to test specific types of measurement invariance,
where subsets of model parameters are assumed to be stable.

Critical Values & p-values

As pointed out above, specification of the asymptotic distribution under H0 for the
test statistics from the previous section is straightforward: it is simply the aggregation of
the asymptotic process B0(t) (Hjort & Koning, 2002; Zeileis & Hornik, 2007). Thus, DM
from (15) converges to supt ||B0(t)||∞, where || · ||∞ denotes the maximum norm.
Similarly, CvM from (16) converges to

∫ 1
0 ||B

0(t)||22dt, where || · ||2 denotes the Euclidean
norm. Finally, max LM from (17) – and analogously the maximum Wald and LR tests –
converges to supt(t(1− t))−1||B0(t)||22 (which can also be interpreted as the maximum of a
tied-down Bessel process, as pointed out previously).

While it is easy to formulate these asymptotic distributions theoretically, it is not
always easy to find closed-form solutions for computing critical values and p-values from
them. In some cases – in particular for the double maximum test – such a closed-form
solution is available from analytic results for Gaussian processes (see e.g., Shorack &
Wellner, 1986). For all other cases, tables of critical values can be obtained from direct
simulation (Zeileis, 2006) or in combination with more refined techniques such as response
surface regression (Hansen, 1997).

The analytic solution for the asymptotic p-value of a DM statistic d is

P (DM > d | H0)
asy
= 1−

{
1 + 2

∞∑
h=1

(−1)h exp(−2h2d2)

}k
. (18)

This combines the crossing probability of a univariate Brownian bridge (see e.g., Shorack
& Wellner, 1986; Ploberger & Krämer, 1992) with a straightforward Bonferroni correction
to obtain the k-dimensional case. The terms in the summation quickly go to zero as h
goes to infinity, so that only some large finite number of terms (say, 100) need to be
evaluated in practice.

For the Cramér-von Mises test statistic CvM , Nyblom (1989) and Hansen (1992)
provide small tables of critical values which have been extended in the software provided
by Zeileis (2006). Critical values for the distribution of the maximum LR/Wald/LM tests
are provided by Hansen (1997). Note that the distribution depends on the minimal and
maximal thresholds employed in the test.
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Local Alternatives

Using results from Hjort and Koning (2002) and Zeileis and Hornik (2007), we can
also capture the behavior of the process B(t, θ̂) under specific alternatives of parameter
instability. In particular, we can assume that the pattern of deviation θ(vi) can be
described as a constant parameter plus some non-constant deviation g(i/n):

θ(vi) = θ0 + n−1/2g(i/n). (19)

In this case, the scores s(θ0;xi) from Equation (6) do not have zero expectation but rather

E[s(θ0;xi)] = 0 + n−1/2C(θ0)g(i/n). (20)

The covariance matrix C(θ) from the expected outer product of gradients is then

C(θ0) = E[s(θ0;xi)s(θ;xi)
′] (21)

which, at θ0, coincides with the expected information matrix.
Under the local alternative described above, Hjort and Koning (2002) show that the

process B(t, θ̂) behaves asymptotically like

B0(t) + Î−1/2C(θ̂)G0(t), (22)

i.e., a zero-mean Brownian bridge plus a term with non-zero mean driven by
G0(t) = G(t)− tG(1), where G(t) =

∫ t
0 g(y)dy. Hence, unless the local alternative has

g(t) ≡ 0, the empirical process B(t, θ̂) will have a non-zero mean. Hence, the
corresponding tests will have non-trivial power (asymptotically). We use these results in
the “Simulation” section to describe the expected behavior of the Brownian bridge.

Locating the Invariance

If the employed parameter instability test detects a measurement invariance
violation, the researcher is typically interested in identification of the parameter(s)
affected by it and/or the associated threshold(s). As argued above, the double maximum
test is particularly appealing for this because the k-dimensional empirical cumulative score
process can be graphed along with boundaries for the associated critical values (see
Figure 3). Boundary crossing then implies a violation of measurement invariance, and the
location of the most extreme deviation(s) in the process convey threshold(s) in the
underlying ordering V .

For the maximum LR/Wald/LM tests, it is natural to graph the sequence of
LR/Wald/LM statistics along V , with a boundary corresponding to the critical value (see
Figure 2 and the third row of Figure 4). Again, a boundary crossing signals a significant
violation, and the peak(s) in the sequence of statistics conveys threshold(s). Note that,
due to summing over all parameters, no specific parameter can be identified that is
responsible for the violation. Similarly, neither component(s) nor threshold(s) can be
formally identified for the Cramér-von Mises test. However, graphing of (transformations
of) the cumulative score process may still be valuable for gaining some insights (see, e.g.,
the second row of Figure 4).
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If a measurement invariance violation is detected by any of the tests, one may want
to incorporate it into the model to account for it. The procedure for doing this typically
depends on the type of violation θ(V ), and the visualizations discussed above often prove
helpful in determining a suitable parameterization. In particular, one approach that is
often employed in practice involves adoption of a model with one (or more) threshold(s) in
all parameters (i.e., (10) for the single threshold case). In the multiple threshold case,
their location can be determined by maximizing the corresponding segmented
log-likelihood over all possible combinations of thresholds (Zeileis et al., 2010, adapt a
dynamic programming algorithm to this task). For the single threshold case, this reduces
to maximizing the segmented log-likelihood

`(θ̂(A);x1, . . . , xm) + `(θ̂(B);xm+1, . . . , xn) (23)

over all values of m corresponding to possible thresholds ν (such that vm ≤ ν and
vm+1 > ν). As pointed out previously, this is equivalent to maximizing the LR statistic
from (11) (with some minimal subgroup size typically imposed).

Formally speaking, the maximization of (23) – or equivalently (11) – yields an
estimate ν̂ of the threshold in H∗1 . If H∗1 is in fact the true model, the peaks in the
Wald/LM sequences and the cumulative score process, respectively, will occur at the same
threshold asymptotically. However, in empirical samples, their location may differ
(although often not by much).

These attributes give the proposed tests important advantages over existing tests, as
existing measurement invariance methods cannot: (1) test measurement invariance for
unknown ν, or (2) isolate specific parameters violating measurement invariance. In
particular, Millsap (2005) cites “locating the invariance violation” as a major outstanding
problem in the field. In the following sections, we demonstrate the proposed tests’ uses
and properties via example and simulation. We first describe an example and simulation
with artificial data, and we then provide an illustrative example with real data. Finally,
we conclude the paper with a discussion of test extensions and general summary.

Example with Artificial Data

Consider a hypothetical battery of six scales administered to students aged 13 to 18
years. Three of the scales are intended to measure verbal ability, and three of the scales
are intended to measure mathematical ability. We may observe a maturation effect in the
resulting data, whereby the factor loadings for older students are larger than those for
younger students. The researcher’s goal is to study whether the scales are measurement
invariant with respect to age, which is taken to be the auxiliary variable V .

Method

To formally represent these ideas, we specify that the data arise from a factor
analysis model with two factors. The base model, displayed in Figure 1, specifies that
measurement invariance holds, with three scales arising from the verbal factor and three
scales arising from the mathematical factor. For the measurement invariance violation, we
specify that V (student age) impacts the values of verbal factor loadings in the model: if
students are 16 through 18 years of age, then the factor loadings corresponding to the first
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factor (λ11, λ21, λ31) reflect those in Figure 1. If students are 13 through 15 years of age,
however, then the factor loadings corresponding to the first factor are three standard
errors (= asymptotic standard errors divided by

√
n) lower than those in Figure 1. This

violation states that the verbal ability scales lack measurement invariance with respect to
age. For simplicity, we assume that the mathematical scales are invariant.

A sample of size 200 was generated from the model described above, and a test was
conducted to examine measurement invariance of the three verbal scales. To carry out the
test, a confirmatory factor analysis model (with the paths displayed in Figure 1) was fit to
the data. Casewise derivatives and the observed information matrix were then obtained,
and they were used to calculate the cumulative score process via (13). Finally, we
obtained various test statistics and p-values from the cumulative score process. These
include the double-max statistic from (15), the Cramér-von Mises statistic from (16), and
the max LM statistic from (17).

As mentioned in the theory section, the tests give us the flexibility to study
hypotheses of partial change. That is, we have the ability to test various subsets of
parameters. For example, if we suspected that the verbal factor loadings lacked
measurement invariance, we could test

H0 : (λi,11 λi,21 λi,31) = (λ0,11 λ0,21 λ0,31), i = 1, . . . , n, (24)

where (λi,11 λi,21 λi,31) represent the verbal factor loading parameters for student i. Thus,
here only k∗ = 3 from the overall k = 19 model parameters are assessed (where the 19
parameters include six factor loadings, six unique variances, six intercepts, and one factor
correlation). Alternatively, we can consider all k∗ = k = 19 parameters, leading to a test
of (8). We consider both of these tests below.

Results

Here, we first describe overall results and subsequently the identification of ν and
isolation of model parameters violating measurement invariance.

Overall Results. Test statistics for the hypotheses (24) and (8) are displayed in
Figure 4. Each panel displays a test statistic’s fluctuation across values of student age,
with the first column containing tests of (24) and the second column containing tests
of (8). The solid horizontal lines represent critical values for α = 0.05, and the
Cramér-von Mises panels also contain a dashed line depicting the value of the test statistic
CvM (test statistics for the others are simply the maxima of the processes). In other
words, for panels in the first and third rows, (24) is rejected if the process crosses the
horizontal line. For panels in the second row, (8) is rejected if the dashed horizontal line is
higher than the solid horizontal line.

The figures convey information about several properties of the tests. First, all three
tests are more powerful (and in this example significant) if we test only those parameters
that are subject to instabilities. Conversely, if all 19 model parameters are assessed
(including those that are in fact invariant), the power is decreased. This decrease,
however, is less pronounced for the double-max test as it is more sensitive to fluctuations
among a small subset of parameters (3 out of 19 here).
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Figure 2 compares the max LM statistic (solid line) to the max LR statistic (dashed
line) from (12), as applied to testing (8). (Note also that the visualization of the max LM
in Figure 2 is identical to the bottom right panel of Figure 4.) The critical values for these
two tests are identical, hence the single horizontal line. The figure shows that the two
statistics are very similar to one another, with both maxima at the dotted vertical line.
This is generally to be expected, because the two tests are asymptotically equivalent. The
max LR statistic cannot be obtained from the empirical fluctuation process, however, so
the factor analysis model must be refitted before and after each of the possible threshold
values ν (i.e., here 320 model fits for 160 thresholds).

Interpretation of Test Results. As described above, the tests of (24) imply that the
verbal scales lack measurement invariance. We can also use the tests to: (1) locate the
threshold ν, and (2) isolate specific parameters that violate measurement invariance. For
example, as described previously, information about the location of ν can be obtained by
examining the peaks in Figure 4. For all six panels in the figure, the peaks occur near an
age of 16.1. This agrees well with the true threshold of 16.0.

We previously noted that the double-max test is advantageous because it yields
information about individual parameters violating measurement invariance. That is, it
allows us to examine whether or not individual parameters’ cumulative score processes
lead one to reject the hypothesis of measurement invariance. Figure 3 shows the
individual cumulative score processes for the three verbal factor loadings and the top left
panel of Figure 4 shows the same processes aggregated over the three parameters. In both
graphics, horizontal lines reflect the same critical value at α = 0.05. The figure shows that
the third parameter (i.e., λ31) crosses the dashed line, so we would conclude a
measurement invariance violation with respect to age for the third verbal test. The fact
that the cumulative score process for the first and second loadings did not achieve the
critical value represents a type II error, which implicitly brings into question the tests’
power. We generally address the issue of power in the simulations below.

Simulation

In this section, we conduct a simulation designed to examine the tests’ power and
type I error rates in situations where measurement invariance violations are known to
exist. Specifically, we generated data from the factor analysis model used in the previous
section, with measurement invariance violations in the “verbal” factor loadings with
respect to a continuous auxiliary variable.

We examine the power and error rates of the three tests used in the previous
section: the double-max test, the Cramér-von Mises test, and the max LM test. We also
compare tests involving only the k∗ = 3 factor loadings lacking invariance with tests of all
k∗ = k = 19 model parameters. It is likely that power is higher when testing only the
affected model parameters, but the affected parameters are usually unknown in practice.
Thus, the k∗ = 3 and k∗ = 19 conditions reflect boundary cases, with the performance of
tests involving other subsets of model parameters (e.g., all factor loadings) falling in
between the boundaries. Finally, we also examine the tests’ power across various
magnitudes of measurement invariance violations.
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Method

Data were generated from the same model and with the same type of measurement
invariance violation as was described in the “Artificial Example” section. Sample size and
magnitude of measurement invariance violation were manipulated to examine power: we
examined power to detect invariance violations across four sample sizes
(n = 50, 100, 200, 500) and 17 magnitudes of violations. These violations involved the
younger students’ values of {λ11, λ21, λ31} deviating from the older students’ values by
d times the parameters’ asymptotic standard errors (scaled by

√
n), with

d = 0, 0.25, 0.5, . . . , 4. The d = 0 standard error condition was used to study type I error
rate.

For each combination of sample size (n) × violation magnitude (d) × number of
parameters being tested (k∗), 5,000 datasets were generated and tested. In each dataset,
half the individuals had “low V ” (e.g., 13–15 years of age) and half had “high V ” (e.g.,
16–18 years of age).

Using results discussed previously in the “Local Alternatives” section, we can derive
the expected behavior of the univariate Brownian bridges for the parameters
{λ11, λ21, λ31}. For these parameters, we use a simple step function g(t) = I(t > 0.5)
multiplied by the violation magnitude. Thus, G(t) = I(t > 0.5)× (t− 0.5) and
G0(t) = {I(t > 0.5)− 0.5} × t− I(t > 0.5)× 0.5, both again multiplied by the violation
magnitude. This implies that the mean under the alternative is driven by a function that
is triangle-shaped, with a peak at the changepoint t = 0.5 for the parameters affected by
the change (and equal to zero for all remaining parameters).

Results

Full simulation results are presented in Figure 5, and the underlying numeric values
for a subset of the results are additionally displayed in Table 1. In describing the results,
we largely refer to the figure.

Figure 5 displays power curves as a function of violation magnitude, with panels for
each combination of sample size (n) × number of parameters being tested (k∗). Separate
curves are drawn for the double-max test (solid lines), the Cramér-von Mises test (dashed
lines), and the max LM test (dotted lines). One can generally observe that simultaneous
tests of all 19 parameters result in decreased power, with the tests performing more
similarly at the larger sample sizes. The tests distinguish themselves from one another
when only the three factor loadings are tested, with the Cramér-von Mises test having the
most power, followed by max LM , followed by the double-max test. This advantage
decreases at larger sample sizes, and we also surmise that it decreases as extra parameters
satisfying measurement invariance are included in the tests. At n = 50, generally regarded
as a small sample size for factor analysis, the power functions break down and are not
monotonic with respect to violation magnitude.

Table 1 presents a subset of the results displayed in Figure 5, but it is easier to see
exact power magnitudes in the table. The table shows that the power advantage of the
Cramér-von Mises test can be as large as 0.1, most notably when three parameters are
being tested. It also shows that the Cramér-von Mises test generally is very close to its
nominal type I error rate, with the double-max test being somewhat conservative and the
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max LM test being slightly liberal.
In summary, we found that the proposed tests have adequate power to detect

measurement invariance violations in applied contexts. The Cramér-von Mises statistic
exhibited the best performance for the data generated here, though more simulations are
warranted to examine the generality of this finding in other models or other parameter
constellations. In the discussion, we describe extensions of the tests in factor analysis and
beyond.

Application: Stereotype Threat

Wicherts, Dolan, and Hessen (2005), henceforth WDH, utilized confirmatory factor
models to study measurement invariance in a series of general intelligence scales. They
were interested in the notion of stereotype threat, whereby stereotypes concerning a
subgroup’s ability adversely impact the subgroup’s performance on tests of that ability.
The authors specifically focused on stereotypes concerning ethnic minorities’ performance
on tests of general intelligence. In this section, we use the proposed tests to supplement
the authors’ original analyses.

Background

To study stereotype threat in a measurement invariance framework, Study 1 of
Wicherts et al. (2005) involved 295 high school students completing three intelligence tests
in two between-subjects conditions. Conditions were defined by whether or not students
received primes about ethnic stereotypes prior to testing. To study the data, WDH
employed a four-group, one-factor model with the three intelligence tests as manifest
variables. The groups were defined by ethnicity (majority/minority) and by the
experimental manipulation (received/did not receive stereotype prime). Results indicated
that the intelligence tests lacked measurement invariance, with the minority group
receiving stereotype primes being particularly different from the other three groups on the
most difficult intelligence test. In the example below, we employ one of the models used
by WDH. Our V is participants’ aptitudes, as measured by their grade point averages
(GPAs) which were unused in the original analyses.

Method

WDH tested a series of confirmatory factor models for various types of measurement
invariance. We focus on the model used in their Step 5b (see pp. 703–704 of their paper),
which involved across-group restrictions on the factor loadings, unique variances,
intercepts, and factor variances. These parameters were typically restricted to be equal
across groups, though a subset of the parameters were allowed to be group-specific upon
examination of modification indices. The model provided a reasonable fit to the data, as
judged by examination of χ2, RMSEA (root-mean-square error of approximation), and
CFI (comparative fit index) statistics. While the model included four groups as described
above, we focus only on the submodel for the minority group that received stereotype
primes, which is pictured in Figure 6. In the figure, paths with dashed lines and
parameters in bold/italics signify group-specific parameters. These include the factor
mean η, numerical factor loading λnum, numerical intercept µnum, and numerical unique
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variance ψnum. Other parameters (not displayed) were restricted to be equal across all
four groups, with the exception of the factor variance. The factor variance was restricted
to be equal within both minority groups, and separately within both majority groups.

To carry out the tests, we first fit the four-group model to the data, calculating
casewise derivatives and the observed information matrix. Second, to assess measurement
invariance within the “minority, stereotype prime” group only, the scores of the nMSP

individuals from that group are ordered and aggregated along GPA (i.e., in this
application the variable V ). The cumulative score process (13) with respect to GPA then
allows us to obtain various test statistics and p-values from this process. Test statistics
include the double-max statistic from (15), the Cramér-von Mises statistic from (16), and
the max LM statistic from (17). We focus on the double-max statistic due to its ease of
interpretation and intuitive visual display.

As mentioned in the theory section, the tests give us the flexibility to study
hypotheses of partial change: we have the ability to test various subsets of parameters.
For the WDH data, we first test

H0 : (λi,num ηi µi,num ψi,num) = (λ0,num η0 µ0,num ψ0,num), i = 1, . . . , nMSP, (25)

where λi,num is the factor loading on the numerical scale, ηi is student i’s factor mean,
µi,num is student i’s intercept on the numerical scale, and ψi,num is student i’s unique
variance on the numerical scale. Thus, (25) states that these four group-specific model
parameters are invariant with respect to GPA.

Results

The double-max test for the hypothesis (25) is shown in Figure 7, displaying the
cumulative score processes for each of the four group-specific parameters across GPA
along with horizontal lines representing the critical value for α = 0.05. This shows that
the “minority, stereotype prime” group lacks invariance with respect to GPA, because one
of the processes crosses its boundaries. Furthermore, as this process pertains to the
variance ψnum of the numerical scale (bottom panel) it can be concluded that the
invariance violation is associated with this parameter. Both the factor loading for the
numerical scale λnum and the factor mean η also exhibit increased fluctuation, although
they are just non-significant at level α = 0.05. Only the process associated with the
intercept µnum shows moderate (and hence clearly non-significant) fluctuation across GPA.

We can also use the test results to locate the threshold ν, which in this context can
be used to define GPA-based subgroups whose measurement parameters differ. As
described previously, information about the location of ν can be obtained by examining
the peaks in Figure 7. The main peak occurs around a GPA of 6.3 and a second one
near 5.9 (6 corresponds to the American ‘C’ range). These peaks roughly divide
individuals into those receiving D’s and F’s, those receiving solid C’s, and those receiving
high C’s, B’s, and A’s.

In addition to the double-max test, the Cramér-von Mises or max LM statistics
could also be employed. They also lead to clearly significant violations of measurement
invariance (p < 0.005 for both tests) and the corresponding visualizations bring out
similar peaks as the double-max test in Figure 7 (and hence are omitted here).
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Summary

Application of the proposed measurement invariance tests to the Wicherts et al.
(2005) data allowed us to study the extent to which model parameters are invariant with
respect to GPA in a straightforward manner. The tests focused on a set of group-specific
parameters within a four-group confirmatory factor model, and they could be carried out
using the results from a single estimated model. The latter fact is important, as other
approaches to the problem described here may require multiple models to be estimated
(e.g., for LR tests) or adversely impact model fit and degrees of freedom (e.g., if GPA is
inserted directly into the model). Further, through examination of both test statistics and
cumulative score processes, the tests were interpretable from both a theoretical and
applied standpoint.

We included a factor mean in the application in order to demonstrate the tests’
generality. To deal with measurement invariance specifically, however, we may elect to
focus on only the measurement parameters within the model (omitting the factor mean).
That is, it would not have been notable or surprising if we had observed that the factor
mean lacked measurement invariance with respect to GPA: this result would have implied
that individuals’ latent intelligence fluctuates with GPA. We speculate that such a result
would often be obtained when V is related to the latent variable of interest.

General Discussion

In this paper, we have applied a family of stochastic process-based statistical tests
to the study of measurement invariance in psychometrics. The tests have reasonable
power, can isolate subgroups of individuals violating measurement invariance based on a
continuous auxiliary variable, and can isolate specific model parameters affected by the
violation. In this section, we consider the tests’ use in practice and their extension to
more complex scenarios.

Use in Practice

The proposed tests give researchers a new set of tools for studying measurement
invariance, allowing them the flexibility to: (1) simultaneously test all model parameters
across all individuals, yielding results relevant to many types of measurement invariance
(see, e.g., Meredith, 1993), (2) test a subset of model parameters, either across all
individuals or within a multiple-group model, and (3) use the tests as a type of
modification index following significant LR tests. Traditional steps to studying
measurement invariance have involved sequential LR tests for various types of invariance
using multiple-group models. As shown in the “Application” section, it can be beneficial
to employ the traditional steps in tandem with the proposed tests. Furthermore, when
groups are not defined in advance (e.g., continuous V ), the traditional steps fail unless
further assumptions about the nature of the groups are made.

It is worth mentioning that the proposed tests are not invariant with respect to the
choice of identification constraints. They share this property with both LM and Wald
tests (while LR tests are invariant to the choice of identification constraints). However,
asymptotically the influence of the parametrization disappears and also in finite samples it
typically does not change the results significantly. For example, in the stereotype threat
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application, we assessed the p-values of all three tests under the constraint that the
abstract reasoning loading is fixed to 1 (see Figure 6) and compared them to the p-values
under the constraint that the verbal loading is fixed to 1. All p-values remained clearly
significant and the changes were all smaller than 0.00002.

In addition to providing general information about whether or not measurement
invariance holds, the proposed tests allow researchers to interpret the nature of the
invariance violation. This is made possible, e.g., through the tests’ abilities to locate ν,
the threshold dividing individuals into subgroups that violate measurement invariance (see
Equation (10)). It is also possible to formally estimate one or more ν thresholds by
adopting a (partially) segmented model (see e.g., Zeileis et al., 2010).

Comparison to Other Methods

The step functions from (10) were employed in the current paper to highlight
connections with nested model comparison, but the proposed tests typically have
non-trivial power for all (non-constant) deviation patterns θ(vi) (considered in
Equation (9)). Thus, the tests will also have power for linear deviations from parameter
constancy, although other techniques may perform better in this particular case.
Examples include the class of moderated factor models (Bauer & Hussong, 2009;
Molenaar, Dolan, Wicherts, & van der Mass, 2010; Neale, Aggen, Maes, Kubarych, &
Schmitt, 2006; Purcell, 2002), whereby continuous moderators are allowed to linearly
impact model parameters (Purcell, 2002, also considers quadratic effects of the
moderators). Moreover, if the change in parameters is continuous but not exactly linear –
e.g., a sigmoidal shift from one set of parameters to another one – then the simple single
shift model in (10) may be a useful first approximation and may have better power than
linear techniques (depending on how clearly the two regimes are separated).

The proposed tests are also similar to factor mixture models (e.g., Dolan & van der
Maas, 1998; Lubke & Muthén, 2005) in that they can handle unknown subgroups
violating measurement invariance. Covariates can also be used to predict the unknown
subgroups under both approaches. For example, for the data used in our simulations, one
could employ a factor mixture model with two latent classes where the class probabilities
depend on student’s age through a logit link. If the assumptions of such a mixture hold,
i.e., that each observation is a weighted combination from a (known) number of classes,
the fitted model has more power uncovering this structure and makes it easy to interpret.
However, the proposed tests are easier to use with fewer assumptions about the type of
deviations (as long as they occur along the selected variable V ).

More generally, all the approaches described above can be distinguished from the
proposed tests in that they require estimation of a new model of increased complexity
(due to the moderator/covariate). The proposed tests, on the other hand, are of the
“posthoc” variety, relying only on results calculated during the original model estimation.
While no method clearly dominates across all situations, use of the proposed tests can at
least reduce some of the technical issues associated with estimating and interpreting
models of greater complexity. This alone is not a good reason to use the tests, but it is a
consideration that is often meaningful in practice.
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Categorical Auxiliary Variable

One issue that was largely unaddressed in this paper involved the use of categorical
V to study measurement invariance. In this case, groups are already specified in advance,
and so traditional methods for fixed subgroups (i.e., LR, Wald, and LM tests) may suffice.
However, we can also obtain an LM-type statistic from the framework developed here.
Assume the observations are divided into C categories I1, I2, . . . , IC . Then, the increment
of the cumulative score process ∆IcB(θ̂) within each category is just the sum of the
corresponding scores. In somewhat sloppy notation:

∆IcB(θ̂) = Î−1/2n−1/2
∑
i∈Ic

s(θ̂;xi). (26)

This results in a C × k matrix, with one entry for each category-by-model parameter
combination. We can test a specific model parameter for invariance by focusing on the
associated column of the C × k matrix and employing a weighted squared sum of the
entries in the column to obtain a χ2-distributed statistic with (C − 1) degrees of freedom
(Hjort & Koning, 2002). Alternatively, to simultaneously test multiple parameters, we can
sum the χ2 statistics and degrees of freedom for the individual parameters. In addition to
categorical V , this framework may be useful for ordinal V (or continuous V with many
ties). In this situation, one could also adapt the statistics (15), (16), and (17) computed
from the same cumulative score process as usual. The only required modification is that
the statistics should not depend on the process’s values “within” a category (or group of
ties). This is easily achieved by taking the maximum (or sum) not over all observations
i = 1, . . . , n, but over only those i at the “end” of a category.

The number of potential thresholds may be very low in these situations, which
impacts the extent to which asymptotic results hold for the main test statistics described
in this paper.

Extensions

The family of tests described in this paper can be extended in various ways. First, it
is possible to construct an algorithm that recursively defines groups of individuals
violating measurement invariance with respect to multiple auxiliary variables. Such an
algorithm is related to classification and regression trees (Breiman, Friedman, Olshen, &
Stone, 1984; Merkle & Shaffer, 2011; Strobl, Malley, & Tutz, 2009), with related
algorithms being developed for general parametric models (Zeileis, Hothorn, & Hornik,
2008) and Rasch models in particular (Strobl, Kopf, & Zeileis, 2010).

Relatedly, Sánchez (2009) describes a general method for partitioning/segmenting
structural equation models within a partial least squares framework. This method involves
direct maximization of the likelihood ratio (i.e., fitting the model for various subgroups
defined by V and choosing the subgroups with the largest likelihood ratio). Thus, unlike
the tests described in this paper, this approach does not provide a formal significance test
with a controlled level of type I errors.

The proposed tests also readily extend to other psychometric models. For example,
the tests can be used to generally study the stability of structural equation model
parameters across observations. This includes the study of measurement invariance in
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second-order growth models and related models for longitudinal data (e.g., Ferrer,
Balluerka, & Widaman, 2008; McArdle, 2009). The issue of measurement invariance is
important in these models in order to establish that a “true” change has occurred in the
individuals to which the model has been fitted. The tests described here can be used to
help establish measurement invariance with respect to both continuous and categorical
auxiliary variables, using only output from the estimated model of interest.

Finally, the tests can be used for the study of differential item functioning (DIF) in
item response models (e.g., Strobl et al., 2010, who focused on Rasch models). Traditional
DIF methods are similar to those for factor analysis in that subgroups must be specified in
advance. The tests proposed here can detect subgroups automatically, however, offering a
unified way of studying both measurement invariance in factor analysis and differential
item functioning in item response. While factor-analytic measurement invariance methods
and DIF methods have developed largely independently of one another, the methods can
certainly be treated from a unified perspective (e.g., McDonald, 1999; Millsap, 2011;
Stark, Chernyshenko, & Drasgow, 2006). The tests proposed here were designed with this
perspective in mind.

Summary

We outline a family of stochastic process-based parameter instability tests from
theoretical statistics and apply them to the issue of measurement invariance in
psychometrics. The paper includes theoretical development, an applied example, and
study of the tests’ performance under controlled conditions. The tests are found to have
good properties via simulation, making them useful for many psychometric applications.
More generally, the tests help solve standing problems in measurement invariance research
and provide many avenues for future research. This can happen both through extensions
of the tests within a factor-analytic context and through application of the tests to new
models.

Computational Details

All results were obtained using the R system for statistical computing (R
Development Core Team, 2012), version 3.0.3, employing the add-on packages
lavaan 0.5-15 (Rosseel, 2012) and OpenMx 1.3.2-2301 (Boker et al., 2011) for fitting of the
factor analysis models and strucchange 1.5-0 (Zeileis, Leisch, Hornik, & Kleiber, 2002;
Zeileis, 2006) for evaluating the parameter instability tests. R and the packages lavaan
and strucchange are freely available under the General Public License 2 from the
Comprehensive R Archive Network at http://CRAN.R-project.org/ while OpenMx is
available under the Apache License 2.0 from http://OpenMx.psyc.virginia.edu/.
R code for replication of our results is available at
http://semtools.R-Forge.R-project.org/.
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Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified
approach. Psychometrika, 54 , 131–151.

Shorack, G. R., & Wellner, J. A. (1986). Empirical processes with applications to
statistics. New York: John Wiley & Sons.

Stark, S., Chernyshenko, O. S., & Drasgow, F. (2006). Detecting differential item
functioning with confirmatory factor analysis and item response theory: Toward a
unified strategy. Journal of Applied Psychology , 91 , 1292–1306.

Strobl, C., Kopf, J., & Zeileis, A. (2010, December). A new method for detecting
differential item functioning in the Rasch model (Technical Report No. 92).
Department of Statistics, Ludwig-Maximilians-Universität München. URL
http://epub.ub.uni-muenchen.de/11915/.

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning:
Rationale, application, and characteristics of classification and regression trees,



Tests of measurement invariance without subgroups 24

bagging, and random forests. Psychological Methods, 14 , 323–348.
Wicherts, J. M., Dolan, C. V., & Hessen, D. J. (2005). Stereotype threat and group

differences in test performance: A question of measurement invariance. Journal of
Personality and Social Psychology , 89 (5), 696–716.

Wothke, W. (2000). Longitudinal and multi-group modeling with missing data. In
T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and
multilevel data: Practical issues, applied approaches, and specific examples. Mahwah,
NJ: Lawrence Erlbaum Associates.

Zeileis, A. (2005). A unified approach to structural change tests based on ML scores,
F statistics, and OLS residuals. Econometric Reviews, 24 (4), 445–466.

Zeileis, A. (2006). Implementing a class of structural change tests: An econometric
computing approach. Computational Statistics & Data Analysis, 50 (11), 2987–3008.

Zeileis, A., & Hornik, K. (2007). Generalized M-fluctuation tests for parameter instability.
Statistica Neerlandica, 61 , 488–508.

Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal
of Computational and Graphical Statistics, 17 , 492–514.

Zeileis, A., Leisch, F., Hornik, K., & Kleiber, C. (2002). strucchange: An R package for
testing for structural change in linear regression models. Journal of Statistical
Software, 7 (2), 1–38. URL http://www.jstatsoft.org/v07/i02/.

Zeileis, A., Shah, A., & Patnaik, I. (2010). Testing, monitoring, and dating structural
changes in exchange rate regimes. Computational Statistics & Data Analysis, 54 ,
1696–1706.



Tests of measurement invariance without subgroups 25

Author Note

This work was supported by National Science Foundation grant SES-1061334. The
authors thank Jelte Wicherts, who generously shared data for the stereotype threat
application, Yves Rosseel, who provided feedback and code for performing the tests with
the lavaan package, Kris Preacher, who provided helpful comments on the manuscript,
and the participants of the Psychoco 2012 workshop on psychometric computing for
helpful discussion. Correspondence to Edgar C. Merkle, Department of Psychological
Sciences, University of Missouri, Columbia, MO 65211. Email: merklee@missouri.edu.



Tests of measurement invariance without subgroups 26

Table 1
Simulated power for three test statistics across four sample sizes n, nine magnitudes of
measurement invariance violations, and two subsets of tested parameters k∗. See Figure 5
for a visualization (using all 17 violation magnitudes).

Violation Magnitude (SE)
n k∗ Statistic 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

50 3 DM 2.1 2.9 5.8 10.0 15.5 21.9 24.6 21.7 16.0
CvM 3.8 5.4 11.4 21.5 33.4 47.1 49.3 43.1 30.3
max LM 6.1 6.6 10.3 16.7 25.4 36.1 37.6 32.4 23.7

19 DM 1.2 1.4 2.0 3.1 4.4 6.1 6.7 6.5 6.8
CvM 3.4 3.7 5.5 8.1 10.9 15.6 18.6 18.9 17.9
max LM 7.7 8.1 8.7 10.9 13.0 16.0 16.7 17.1 15.9

100 3 DM 2.8 4.0 7.8 15.2 26.2 39.7 55.3 66.1 70.1
CvM 4.5 6.7 12.1 26.1 44.1 63.0 79.1 87.2 90.1
max LM 5.2 6.8 10.8 19.8 34.0 51.8 69.9 80.9 85.7

19 DM 2.4 2.4 3.4 5.6 8.8 14.6 22.1 29.9 34.3
CvM 4.6 4.7 6.3 9.8 16.1 24.1 35.1 46.8 53.3
max LM 6.9 7.5 8.1 10.5 14.9 20.0 28.1 37.8 43.1

200 3 DM 3.5 4.4 8.5 17.5 30.7 50.3 68.4 82.3 91.9
CvM 4.8 6.6 12.9 26.6 46.1 69.1 86.2 94.7 98.4
max LM 5.3 6.7 10.8 21.4 36.6 59.5 78.8 91.5 97.4

19 DM 3.6 3.7 4.4 7.3 11.3 21.2 35.8 51.5 67.2
CvM 4.4 4.8 7.3 11.5 18.7 30.1 46.6 62.6 76.4
max LM 6.3 6.4 7.4 10.6 15.5 23.9 37.9 53.4 69.2

500 3 DM 4.1 5.3 10.8 19.5 34.2 52.2 71.8 86.4 95.6
CvM 5.2 6.2 13.6 27.3 47.7 68.7 86.3 95.6 99.0
max LM 5.7 6.1 10.9 21.0 39.2 60.5 81.1 92.9 98.5

19 DM 4.2 4.0 5.7 8.8 14.5 25.7 42.8 62.1 78.8
CvM 4.5 5.0 7.4 12.5 20.7 33.9 50.2 68.7 82.9
max LM 5.2 6.5 7.6 9.8 16.1 26.3 42.3 60.6 78.2

Abbreviations: CvM = Cramér-von Mises test; maxLM = Maximum Lagrange multiplier test;

DM = Double-max test.
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Figure Captions

Figure 1. Path diagram representing the base factor analysis model used for the artificial

example and simulations. To induce measurement invariance violations, a seventh

observed variable (student age) determines the values of the verbal factor loadings (λ11,

λ21, λ31).

Figure 2. A comparison of the max LM (solid line) and max LR (dashed line) test

statistics for (8) (i.e., k∗ = 19). The gray horizontal line corresponds to the critical value

at α = 0.05 while the dotted vertical line highlights the threshold at which both test

statistics assume their maximum.

Figure 3. Cumulative score processes for each verbal factor loading. The solid gray

horizontal lines correspond to the critical value of the double-max test at α = 0.05.

Figure 4. Three test statistics of (24) (with k∗ = 3) and (8) (with k∗ = 19), based on the

example involving measurement invariance with respect to student age. Solid gray

horizontal lines represent critical values at α = 0.05, and the dotted, horizontal lines

(second row) represent values of the Cramér-von Mises test statistic.

Figure 5. Simulated power curves for the double-max test (solid), Cramér-von Mises test

(dashed), and max LM test (dotted) across four sample sizes n, two subsets of tested

parameters k∗, and measurement invariance violations of 0–4 standard errors (scaled by

√
n). See Table 1 for the underlying numeric values (using a subset of nine violation

magnitudes).

Figure 6. Path diagram representing the submodel for the “minority, stereotype prime”

group in model 5b of WDH. Dashed paths and parameters in bold/italics are group

specific. Other parameters (not displayed) were restricted to be equal across all four
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groups, with the factor variance only being restricted across the two minority groups.

Figure 7. Cumulative score processes for the four group-specific parameters across GPA in

the “minority, stereotype prime” group using data from Study 1 of WDH. The solid gray

horizontal lines correspond to the critical value of the double-max test at α = 0.05.
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