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Abstract
Strictly proper scoring rules, including the Brier score and the logarithmic
score, are standard metrics by which probability forecasters are assessed and
compared. Researchers often find that one’s choice of strictly proper scoring
rule has minimial impact on one’s conclusions, but this conclusion is typically
drawn from a small set of popular rules. In the context of forecasting world
events, we use a recently-proposed family of proper scoring rules to study
the properties of a wide variety of strictly proper rules. The results indicate
that conclusions vary greatly across different scoring rules, so that one’s
choice of scoring rule should be informed by the forecasting domain. We
then describe strategies for choosing a scoring rule that meets the needs of
the forecast consumer, considering three unique families of proper scoring
rules.

In both research and application, there is often the need to assess the correspondence
between probabilistic forecasts and event outcomes. There exist a variety of statistical
metrics to accomplish this assessment, and analysts typically prefer metrics that are not
vulnerable to manipulation; that is, metrics for which an individual cannot gain an advan-
tage by systematically modifying her forecasts. This is because, if a forecaster can improve
her scores by modifying her forecasts in light of the metric, then we have no way of knowing
when the forecaster is being truthful and when the forecaster is capitalizing on the metric.

Starting with Brier (1950), Murphy (1972), and others, the above arguments have led
to a body of work on proper scoring rules (for a formal review, see Winkler & Jose, 2010).
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To formally define a proper scoring rule, let f be a probabilistic forecast of a Bernoulli
trial d with true success probability p. Proper scoring rules are metrics whose expected
values are minimized if f = p. Strictly proper scoring rules, a subset of proper scoring
rules, are metrics whose expected values are minimized if and only if f = p. While there
exists an infinite number of unique, proper scoring rules, researchers typically employ a
very small number of strictly proper scoring rules in practice. These include the Brier
(quadratic) score, the logarithmic score, and the spherical score. When considering only
these few popular rules, researchers often find that one’s choice of rule does not impact one’s
conclusions. This, in turn, may lead researchers to believe that conclusions are robust to
choice of scoring rule. For example, Staël von Holstein (1970) states that “different scoring
rules lead to essentially the same rankings of the assessors, at least when the ranks are based
on average scores” (p. 154), with similar statements being made by Winkler (1971) and by
O’Hagan et al. (2006). More recently, Bickel (2007) conducted a detailed examination of
these three scoring rules and showed that, while rankings resulting from the three rules are
highly correlated, specific individuals may lose or gain many spots in the rankings. The
change in rankings is most prevalent when the number of potential outcomes is greater than
two.

While many researchers have considered larger families of proper scoring rules (e.g.,
Gneiting & Raftery, 2007; Hand & Vinciotti, 2003; Johnstone, Jose, & Winkler, 2011; Jose,
Nau, & Winkler, 2008, 2009; Winkler, 1996), the focus is often on tailored model estimation
instead of tailored forecast evaluation. One exception is Johnstone et al., who developed
tailored scoring rules that match a decision maker’s utility for various forecast-outcome com-
binations. Additionally, Tetlock (2005) considered many adjustments to standard scoring
rules in the context of political forecasts (see especially the technical appendix). In general,
however, the properties of these alternative scoring rules in practice is underexplored, as
are methods for selecting specific scoring rules from these families.

In this paper, we employ families of proper scoring rules (first the beta family, followed
by the power and pseudospherical families) to obtain a more comprehensive evaluation of
the impact of scoring rule choice on forecaster comparison. We focus on forecasts for
binary items, which is the situation where Bickel (2007) and others found the three popular
scoring rules (Brier, logarithmic, and spherical) to be most similar. We demonstrate that
different strictly-proper scoring rules can yield very different substantive conclusions, which
implies that researchers should carefully consider the scoring rule that is used to evaluate
forecasters. We then provide strategies for choosing a scoring rule that is tailored to a
specific forecasting domain.

In the following pages, we first outline the family of proper scoring rules that we
employ, along with the ways in which we use the family. Next, we apply the methods to
compare forecasts of world events, showing that different strictly proper scoring rules yield
considerably different conclusions. In light of this result, we discuss strategies for choosing
specific rules from families of proper scoring rules. Finally, we discuss practical implications.

The Beta Family of Proper Scoring Rules

We initially focus on a parametric family of proper scoring rules proposed by Buja et
al. (2005). In this section, we describe key results and background that largely follows that
of Buja et al.
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We begin by considering scoring rules to be loss functions associated with the reported
forecasts f . Taking di to be the outcome of trial i, fi to be the associated forecast, and
`(di|fi) to be the “loss” associated with trial i (i = 1, . . . , I), we can generally write a scoring
rule as

L(d|f) = 1
I

I∑
i=1

`(di|fi). (1)

Because we are focusing on situations where di is the outcome of a Bernoulli trial, we can
write the above loss as

`(di|fi) = di`(1|1− fi) + (1− di)`(0|fi), (2)

so that `(0|fi) is increasing in fi and `(1|1− fi) is increasing in 1− fi. Additionally, both
functions should be bounded from below (typically at zero).

For situations where the di are Bernoulli, it can be shown that the scoring rule is
proper if and only if

`(1|1− fi) =
∫ 1

fi

(1− t)ω(t)dt (3)

`(0|fi) =
∫ fi

0
tω(t)dt, (4)

for some function ω(t) that is non-negative and finite across all open intervals on (0, 1) (see
Schervish, 1989; Buja et al., 2005). Additionally, the scoring rule is strictly proper if ω(t) is
nonzero across all open intervals on (0, 1). Thus, we can obtain a variety of (strictly) proper
scoring rules by defining ω(t) in various ways. For example, we obtain the Brier score by
defining ω(t) = 1, and we obtain the logarithmic score by defining ω(t) = t−1(1− t)−1.

Instead of defining a single scoring rule through ω(t), Buja et al. developed a family
of scoring rules by parameterizing ω(t). Their beta family is defined through the function

ω(t|α, β) = tα−1(1− t)β−1, α > −1, β > −1, (5)

with popular scoring rules being obtained as special cases. For example, taking α = β = 0,
we obtain the logarithmic scoring rule via:

`(1|1− fi) =
∫ 1

fi

(1− t)t−1(1− t)−1dt (6)

=
∫ 1

fi

t−1dt (7)

= log(1)− log(fi) (8)
= − log(fi) (9)

and, similarly, `(0|fi) = − log(1 − fi). The Brier score can be obtained by setting α =
β = 1. Further, as α and β go to ∞ together, we obtain a rule that is equivalent to
“misclassification” scoring, defined as

`(1|1− fi) = c if fi < 0.5, 0 otherwise, (10)
`(0|fi) = c if fi > 0.5, 0 otherwise (11)
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Figure 1 . Illustrations of three proper scoring rules in the beta family. The left panel
illustrates a cost-weighted misclassification rule, the center panel illustrates the scoring rule
with α = 1, β = 3, and the right panel illustrates the scoring rule with α = 30, β = 90. It is
seen that, as α and β increase while maintaining a constant ratio, the scoring rules become
similar to cost-weighted misclassification.
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for some constant c. As α and β go together to ∞, scoring rules from the beta family
assume larger and larger values. The beta family scoring rules can immediately be scaled,
however, to attain whatever maximum is desired.

In addition to the popular scoring rules above, the beta family yields novel proper
scoring rules when α 6= β. Buja et al. show that, for α, β > 0, the rules correspond to
situations where the cost of the outcome di = 1 differs from the cost of the outcome di = 0.
In the misclassification case, this concept is intuitive to understand: if c ∈ (0, 1) is the cost
of a false positive and 1 − c is the cost of a false negative, cost-weighted misclassification
may be obtained by replacing Equations (10) and (11) with

`(1|1− fi) = 1− c if fi ≤ c, 0 otherwise, (12)
`(0|fi) = c if fi > c, 0 otherwise, (13)

where the choice of score at fi = c is arbitrary. Note that c is involved in both the score
and the threshold due to the facts that we assumed c ∈ (0, 1) and that the false negative
cost equals 1− c.

The cost-weighted misclassifications are step functions whose values change at the
point fi = c, as displayed in the left panel of Figure 1 (taking c = .25). This figure
includes fi on the x-axis, the score associated with fi on the y-axis, and two lines for
the two different outcomes associated with di. The left panel is a simple visualization of
Equations (12) and (13) with c = .25, with the line whose maximum is .25 representing
`(0|fi) and the line whose maximum is .75 representing `(1|1− fi). In this graph, it is clear
that small values of fi (< .25) are most important: if one reports a small probability and
is incorrect, one receives a large score. Conversely, if one reports a large probability and is
incorrect, the resulting score is the lowest possible (zero).

The beta family’s cost-weighted scoring rules are similar to the step functions in the
left panel of Figure 1, except that the scores change smoothly across values of fi. We obtain
the false positive cost c from α/(α+ β), with the scoring rule being more similar to a step
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function as α and β increase (while maintaining the same ratio). For values of α and β
close to zero, the curves gradually change, essentially reflecting uncertainty in the exact
value of c. This result is illustrated in the center panel of Figure 1, which displays curves
for α = 1, β = 3. As α, β increase to 30, 90 (right panel), the curves get closer to step
functions. In all three panels, low values of fi have the most impact on the resulting score.
In contrast, if we had α > β, high values of fi would have the most impact.

The right panel of Figure 1 also shows that both curves are essentially flat across
much of the range of f . While this scoring rule is technically strictly proper (because the
curves are never exactly flat), it yields scores that are practically equal for multiple values
of f . For example, if Forecaster A always reported a probability of .85 and Forecaster B
always reported a probability of .5, the (30, 90) scoring rule would assign them practically-
equal scores. Thus, we might call this particular rule practically non-strict. We return to
this issue later, where we discuss its impact on the variability in the conclusions that one
draws. First, however, we use the family to study the scoring rules’ properties when applied
to real forecasts.

Application: Forecasting World Events

The forecasts considered here arise from the Aggregative Contingent Estimation Sys-
tem (ACES), a web-based environment that solicited forecasts concerning world events from
the general public. The focal data in this paper include forecasts from over 1, 000 forecasters
on over 200 unique forecasting problems. Importantly, forecasters voluntarily logged in to
the website and chose specific problems to forecast, resulting in very sparse data. A more
detailed summary of the rationale and data collection procedures can be found in Warnaar,
Merkle, Steyvers, et al. (2012).

Below, we use the ACES data to study the stability of forecast evaluations in two gen-
eral areas: comparison of individual forecasters to a baseline, and comparison of forecasters
to one another. The two parameters of the beta family make it straightforward to carry
out these comparisons. This is because two sets of forecasts for the same events (provided
by human forecasters, statistical models, aggregation methods, etc) can be evaluated at
arbitrary points in the two-dimensional space defined by (α, β), which allows us to search
evaluate large grids of points within this space.

In our comparisons, we study summary statistics across different scoring rules in the
beta family. Our summary statistics are generally based on the rank ordering that is implied
by the resulting scores. To study the consistency of rank ordering across J sets of forecasts
for the same events (say, fj , j = 1, . . . , J), we can calculate the rank ordering of the J sets
that is implied by one scoring rule. We can then calculate the rank ordering under other
scoring rules in the beta family, computing the Spearman correlation between the two sets
of rankings:

12
J∑
j=1

{(
Rj,α,β −

J + 1
2

)(
Sj,δ,γ −

J + 1
2

)}
J(J2 − 1) , (14)

where Rj,α,β is the rank of set j under the beta scoring rule with (α, β) and Sj,δ,γ is the
rank of set j under the beta scoring rule with (δ, γ). In setting (δ, γ) = (1, 1) (which reflects
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the Brier score), we can use this equation to compare ranks under arbitrary scoring rules
to ranks under the Brier score.

We also wish to compare individual forecasters to a baseline forecast. In this situation,
we can count the proportion of individuals who “lose to” the baseline (i.e., who have higher
scores than the baseline) under specific scoring rules in the beta family. Given values of α
and β, this can be written as

J∑
j=1

1 (L(d|fj) > L(d|f∗)) , (15)

where L(d|fj) is the score associated with forecaster j (see Equation (1)), L(d|f∗) is the
score associated with the baseline f∗, and 1() is an indicator function that equals one when
the condition is satisfied.

In the next two sections, we use the above methods to evaluate forecasts of general
world events across the beta family of scoring rules. We use the restriction α, β > 0 to
maintain interpretability: while the beta family extends to α = −1, β = −1, the cost-
weighting interpretation breaks down for negative values of α and β.

Comparing Forecasters to One Another

In this section, we use the beta family to generally compare forecasters across a large
set of proper scoring rules, studying the extent to which forecaster rankings vary across the
rules.

Method. Using the ACES data, we compared 10 forecasters on 21 binary problems
that they all forecasted (the appendix contains a set of artificial forecasts that mimic the
real forecasts). This set of forecasters was selected because they all provided forecasts for 21
common problems. While the ACES data included thousands of forecasters and hundreds
of problems, it was generally difficult to find a set of forecasters providing forecasts for
the same problems. This is because forecasters were free to select forecasting problems,
resulting in very sparse data.

For the world events forecasted on the ACES website, it is usually the case that di = 1
is valued more heavily than di = 0. This is because the data are coded so that, for all i,
di = 1 implies a change from the status quo. That is, di = 1 includes changes in world
leaders and new conflicts between nations, while di = 0 implies no change from the current
state of affairs. Thus, a strictly proper scoring rule with α 6= β may be more useful for
this particular application. As previously discussed in the context of Figure 1, scoring rules
with α < β emphasize low-probability forecasts: low-probability forecasts where di = 1
incur a large penalty, and scores associated with high-probability forecasts do not vary
greatly. Conversely, scoring rules with α > β emphasize high-probability forecasts: high-
probability forecasts associated with di = 0 incur a large penalty, and the scores associated
with low-probability forecasts do not change greatly.

While scoring rules with α 6= β are useful, in practice we may need to choose specific
values of α and β for “official” scoring. We provide some discussion of this issue later. For
now, however, we focus on the sensitivity of one’s conclusions to the choice of scoring rule.
This can be assessed via evaluation of the forecasters at multiple values of α and β.
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Table 1
Forecaster rankings implied by the Brier score, logarithmic score, and another scoring rule
from the beta family. Numbers in parentheses are the actual scores assigned to each fore-
caster.

Scoring Rule
Brier Log Beta

Forecaster Number α = 1, β = 1 α = 0, β = 0 α = 9, β = 3
3 1 (0.09) 3 (0.61) 2 (0.05)
9 2 (0.15) 5 (0.78) 4 (0.06)
1 3 (0.16) 10 (1.08) 3 (0.05)
5 4 (0.17) 1 (0.49) 5 (0.07)
6 5 (0.20) 9 (1.00) 6 (0.10)
7 6 (0.20) 2 (0.58) 1 (0.04)
8 7 (0.21) 8 (0.99) 7 (0.11)
2 8 (0.23) 4 (0.70) 8 (0.12)
4 9 (0.31) 7 (0.94) 9 (0.15)
10 10 (0.31) 6 (0.87) 10 (0.16)

Spearman correlations 1.00 0.15 0.81
1.00 0.31

1.00

Results. The forecaster rankings implied by the Brier score and by the logarithmic
score are displayed in the middle two columns of Table 1. It is observed that these rank-
ings exhibit more variability than may typically be expected, most notably for forecaster
1 (third row). This is because forecaster 1 tended to report extreme forecasts, and the
incorrect forecasts were heavily penalized under the logarithmic score. The sensitivity of
the logarithmic score to incorrect, extreme forecasts has been characterized as both an ad-
vantage (Johnstone, 2011) and disadvantage (Selten, 1998): advantageous in the sense that
it represents an individual who has log utility for wealth in a gambling context (a “Kelly
bettor;” see Johnstone, 2007, for further discussion), and disadvantageous in the sense that,
if one incorrectly makes a forecast of 0 or 1, then one’s average score can never recover.
Aside from forecaster 1, four other forecasters’ rankings changed by 4 spots across the Brier
and logarithmic scores. To study the rules’ behavior in more detail, artificial data that
mimic the properties of the real data can be found in the Appendix.

The final column of Table 1 displays the ranking under the scoring rule with α =
9, β = 3, which heavily emphasizes high-probability forecasts. The rankings further differ
from those under the Brier and logarithmic scores, resulting in some different conclusions.
Most notably, the best forecaster under this beta score was ranked sixth by the Brier score.
Additionally, the third-ranked forecaster under this beta score was ranked tenth by the
logarithmic score. The Spearman rank-order correlations between the three scoring rules
are displayed at the bottom of the table. These statistics show that the rankings are
only modestly related, and they also show that large correlations do not necessarily imply
complete consistency. For example, rankings under the Brier score and beta score have a
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relatively large correlation of 0.81. However, as noted previously, some individual forecaster
rankings changed considerably across these two rules.

In Table 1, the numbers in parentheses are the average scores that each forecaster
received under each rule. These show that the range of scores is compressed under the
beta rule with α = 9, β = 3, as compared to the other two rules. This could result in extra
variability in the rankings as compared to the other scores (because they are closer together,
so that rankings may switch more often), though it is difficult to use the differences between
pairs of scores to draw any specific conclusions. In particular, the scalings of the scoring
rules are arbitrary, so that a difference of .01 could be very large in one instance and very
small in another instance.

To more globally examine the impact of scoring rule on model rankings, Figure 2
displays Spearman correlations between the forecaster ranking implied by the Brier score
and the forecaster ranking implied by other scoring rules in the beta family. The x-axis
represents values of the α parameter, the y-axis represents values of the β parameter, and
the shading represents the value of the rank-order correlation. Colors closer to white imply
that the model ordering from the beta scoring rule is highly related to that of the Brier score,
while colors closer to black indicate the opposite. The figure shows that, depending on the
specific scoring rule used, the rank order of the forecasters can change dramatically. The
correlations decrease as we move off the diagonal, especially towards the upper left and lower
right corners of the plot. The lower right corner reflects scoring rules for which α > β, which
are rules for which high-probability forecasts are emphasized and low-probability forecasts
are de-emphasized. The upper left corner reflects the opposite type of scoring rule. Thus,
if we place large value on high- (low- ) probability forecasts and small value on low- (high-
) probability forecasts, our forecaster assessment will be considerably different than our
assessment under the Brier score.

While choice of scoring rule has a large impact on the results in this section, we do
note that only ten forecasters were involved. The correlations may not change as much with
larger numbers of forecasters, though there would also seem to be greater opportunity for
changes in rankings. In the next section, we consider a larger number of forecasters.

Comparing Individual Forecasters to the Average

In this section, individual forecasters are compared to the average forecast. The
average forecast is not necessarily a good benchmark against which to evaluate individ-
ual forecasters. However, the average forecast is often better than the typical forecaster
(e.g., Armstrong, 2001) or than a randomly-selected forecaster (e.g., Davis-Stober, Bude-
scu, Dana, & Broomell, 2013), results that are generally described as the wisdom of crowds
(Surowiecki, 2005). These results have been demonstrated in a wide variety of applications
(e.g., Steyvers, Lee, & Miller, 2009; Turner, Steyvers, Merkle, Budescu, & Wallsten, in
press; Yi, Steyvers, Lee, & Dry, 2010), and we study here the extent to which the results
are robust across sets of proper scoring rules.

Method. Data come from 624 ACES forecasters who forecasted at least 8 problems.
The eight-problem threshold is arbitrary and is intended to eliminate the variability resulting
from forecasters who forecasted a small number of problems. We studied the results under
various thresholds from 3 to 16, and they remain similar regardless of the specific threshold
chosen.
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Figure 2 . Contour plot displaying Spearman rank-order correlations between the ordering
implied by the Brier score and the ordering implied by beta family scoring rules.
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To study the wisdom of crowds effect, we compare each forecaster to the unweighted
average of all items that the forecaster chose to forecast. In other words, we employ cri-
terion (15), where f∗ is the unweighted average forecast and J differs for each forecaster.
We first compute (15) with α and β fixed to 1, reflecting the wisdom of crowds effect under
the Brier score. We then compute (15) across a large set of scoring rules in the beta family,
examining the extent to which the wisdom of crowds effect is robust to choice of scoring
rule. As the proportion of individuals “losing to” the average decreases to .5 and beyond,
then the wisdom of crowds effect disappears. It is of interest to examine the types of rules,
if any, that cause the effect to disappear.

Results. Focusing on Brier scores, we found that the average beat 519 out of 624
individuals. The 95% confidence interval associated with this proportion (computed via
R’s binom.test() function) is (0.8, 0.86), which may be taken to indicate a “wisdom of
crowds” effect. However, we can also find strictly proper scoring rules for which the effect
disappears. For example, under the beta-family scoring rule associated with α = 0.4 and
β = 3.45, we find that the average beat only 333 out of 624 individuals. The 95% confidence
interval associated with this proportion is (0.49, 0.57), which suggests that the wisdom of
crowds effect has largely diminished diminished, if not completely disappeared.

The α = 0.4, β = 3.45 scoring rule places emphasis on low-probability forecasts. This
is illustrated in Figure 3, which is similar to the earlier Figure 1: the two lines reflect the
score that one receives for a forecast f (x-axis), depending on whether the outcome is d = 0
or d = 1. This specific figure looks very similar to the middle panel of Figure 1, where
low-probability forecasts associated with d = 1 are most heavily penalized. Additionally,
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Figure 3 . Plot of the α = 0.4, β = 3.45 scoring rule.
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high-probability forecasts from about .7 to 1 are assigned essentially-equal scores. Such a
scoring rule may be useful when d = 1 is a rare occurrence: regardless of the forecast that
one makes on a d = 0 trial, one’s score does not change by much. However, if one makes a
bad forecast on a d = 1 trial, one receives a harsh punishment.

Returning to the comparison of individuals to the average forecast, we found that
the scoring rule from Figure 3 diminishes the wisdom of crowds effect. This result implies
that the average forecast receives the harsh punishment more often than do the individual
forecasters: the average forecast is good at predicting that the status quo will be maintained
(that d = 0), at the cost of some bad forecasts associated with the overturning of the status
quo (d = 1). Conversely, individuals forecast the overturning of the status quo more often,
which in turn avoids the large penalties under the α = 0.4, β = 3.45 rule.

We consider an expanded set of scoring rules in Figure 4, displaying the proportion
of individuals beaten by the average under each rule in the set. The x-axis corresponds to
values of the α parameter, the y-axis corresponds to the proportion of individuals beaten by
the average, and separate lines correspond to values of the β parameter. It is seen that, for
values of β that are large relative to α, the average beats fewer than half of the individuals.
It is additionally seen that, in cases where α = β, the proportion remains stable at just
above .8. This is especially notable because the logarithmic score (α = 0, β = 0) and Brier
score (α = 1, β = 1) are included among these cases.

We do not argue that the α = 0.4, β = 3.45 scoring rule (or others considered in
Figure 4) is the most sensible one to use in practice. Additionally, the fact that the lines
in Figure 3 look flat over some intervals of f implies that this particular scoring rule is
practically non-strict. That is, while the scoring rule has a unique minimum (achieved by
forecasting the true probability of event occurrence), there exist multiple values of fi for
which the resulting score is practically equivalent to the minimum. In practice, one may
wish to define a threshold that separates “practically non-strict” scoring rules from other,
strictly-proper scoring rules. If we only consider the latter subset, then the wisdom of
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Figure 4 . The proportion of individuals beaten by the average under an expanded set of
scoring rules in the beta family.
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crowds effect may not be diminished to such an extent. More generally, the results in this
section illustrate the fact that strictly-proper scoring rules do not place strong constraints
on the conclusions that one may draw.

Choice of Scoring Rule

Given the variability observed in the previous sections, the reader is likely to wonder
how a specific scoring rule could be chosen for a specific forecasting domain. Focusing on
the beta family of scoring rules, the most intuitive choice may involve a focus on the cost
c = α/(α + β). Note that, in the context of evaluation, c represents the decision maker’s
cost, as opposed to the forecaster’s cost. The forecasters themselves may often have a
different view of the costs, either through their own beliefs or through the scoring rule that
was presented to them.

In classification contexts (i.e., when forecasts can only equal zero or one), we men-
tioned earlier that c reflects the cost of a false positive and 1− c the cost of a false negative
(see Equations (10) and (11)). In probabilistic forecasting contexts, c reflects the relative
emphasis on high-probability forecasts, as opposed to low-probability forecasts: a value of
c = 0.5 reflects equal emphasis on low- and high-probability forecasts, while values of c
greater (less) than 0.5 reflect emphasis on high- (low-) probability forecasts. While c does
not determine a specific scoring rule in the beta family (one must also fix either α or β), it
often accounts for much of the variability that is observed across scoring rules.

To demonstrate the impact of c on scoring-rule variability, we revisit the two examples
described earlier in the paper. For each example, we examine the variability in scoring rules
for fixed values of c ∈ (0, 1). Focusing on the comparison of forecasters to one another,
Figure 5 displays Spearman correlations between forecaster ranking under the Brier score
and forecaster ranking under other rules in the beta family. The x-axis is c, the y-axis is
the Spearman correlation, and lines reflect values of α (along with α and β, a beta family
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Figure 5 . Spearman correlation between forecaster rankings under the Brier score and
forecaster rankings under other scores in the beta family. Results are plotted by cost c and
parameter α.
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scoring rule can be uniquely determined by c and α). It is observed that, for a fixed value
of c, the Spearman correlations tend to be very similar to one another. This implies that, if
one fixes c a priori, the results are relatively insensitive to the specific scoring rule chosen.
As c becomes more extreme, the results exhibit more variability.

Focusing on the comparison of forecasters to the average, Figure 6 displays the pro-
portion of individuals that are beaten by the average for various scoring rules in the beta
family. This figure is similar to Figure 4. It is again observed that, for fixed values of
c ∈ (.2, .8), the proportion of individuals beaten by the average is similar across scoring
rules. Additionally, there is greater variability in the correlations for extreme values of c.

These results suggest a general strategy for choosing a scoring rule in the beta family.
First, one chooses a value c that reflects the relative cost of false positives and false negatives
in a misclassification context. If c is, say, between .2 and .8, then the specific scoring rule
that is ultimately chosen may not exert a large influence over one’s conclusions. If c is more
extreme, however, then choice of scoring rule may still exhibit large variability. To choose
a specific scoring rule for fixed c, we propose restricting α + β > 0, then experimenting
with a small number of specific α + β values. These values can be roughly conceptualized
as the certainty associated with choice of c (see Buja et al., 2005 for further discussion):
values of α+β close to zero imply low certainty in c, while increasing values of α+β imply
increasing certainty. Additionally, to give some perspective, our experience indicates that
values of α+ β greater than, say, 100 tend to result in similar conclusions.

While useful, the above strategy is not foolproof. For example, there are likely to
be some situations where c is close to .5 yet scoring rules exhibit varying conclusions.
Additionally, researchers may be interested in data summaries other than those used in
this paper (which were Spearman correlations and proportions of forecasters surpassing a
threshold). To choose a scoring rule in these situations, researchers may fix c, generate
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Figure 6 . The proportion of individuals beaten by the average under an expanded set of
scoring rules in the beta family. Results are plotted by cost c and parameter α.
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artificial data that mimic the domain of interest, and study variability in the measure of
interest across multiple scoring rules. To ease such an examination, we have written an
R package (scoring) that contains our implementation of the beta family (along with the
power and pseudospherical families described below). This package is on the Comprehensive
R Archive Network and can be downloaded and installed in the usual way.

Comparison to Other Families

The beta family is not the only one that could be used to study sensitivity to choice
of scoring rule. Other notable families include the power family and pseudospherical family,
which are one-parameter families that encompass a wide variety of proper scoring rules.
For two-alternative situations such as those considered here, the families may be written as
(Jose et al., 2008, 2009)

`pow(di|fi) = −
(
rγ−1
i − 1
γ − 1 − [rγi + (1− ri)γ − 1]

γ

)
(16)

`sph(di|fi) = − 1
γ − 1

( ri
(rγi + (1− ri)γ)1/γ

)γ−1

− 1

 , (17)

where ri = difi+(1−di)(1−fi) (which is just the forecast associated with the outcome that
occurred) and γ > 1. As γ goes to one, both families converge to the logarithmic scoring
rule. For γ = 2, we obtain the Brier score from the power family and the spherical score
from the pseudospherical family.

We conjecture that scoring rules from the beta family are more likely to exhibit varying
conclusions than are the scoring rules within either family above, because the beta family
has two parameters and a more complex functional form. The above families have been
extended, however, to situations where one wishes to evaluate forecasts w.r.t. a baseline
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(or prior) forecast (Jose et al., 2009). For two-alternative forecasts, we take qi = dib +
(1 − di)(1 − b), where b is the baseline forecast associated with di = 1. The power and
pseudospherical families with baseline b may then be written as

`bpow(di|fi) = −
(

(ri/qi)γ−1 − 1
γ − 1 − [rγi /q

γ−1
i + (1− ri)γ/(1− qi)γ−1 − 1]

γ

)
(18)

`bsph(di|fi) = − 1
γ − 1

( ri/qi

(rγi /q
γ−1
i + (1− ri)γ/(1− qi)γ−1)1/γ

)γ−1

− 1

 . (19)

To study variability in conclusions across scoring rules, these families could potentially be
used in a manner similar to that of the beta family: we can first fix b at a baseline forecast
of interest, just as we fixed c in the beta family. The γ parameter of these families is more
difficult to set, because it does not have a simple interpretation (just as the beta family’s
α+β did not have a simple interpretation). However, we can still examine variability across
values of γ.

To compare the use of these families to that of the beta family, we replicated Figure 5
using the two new families. In these replications, we allowed b to vary from 0 to 1, examining
the Spearman correlation between rankings under the Brier score and rankings under rules
in the families from (18) and (19). Results are shown in Figures 7 and 8. It is seen that the
pseudospherical family results (Figure 8) are similar to the beta family results: once one
fixes the parameter b, there is less variability in scores for different values of γ. However,
the range of correlations is smaller (and closer to one) than the range of correlations under
the beta family.

The power family results (Figure 7) differ from the other families, however. Under this
family, the γ parameter has a larger impact on the correlation than does the b parameter.
This is because, as γ gets large, only extreme forecasts influence the rankings (non-extreme
forecasts are all assigned the same score, regardless of the outcome). Additionally, at
γ = 2, the parameter b has no impact on forecaster rankings. This is because, for γ = 2,
Equation (18) reduces to

r2
i − 2ri

2qi(1− qi)
+ 1

2(1− qi)
+ 1

2 ,

where the denominator of the first term is the same regardless of the outcome di, and the
second term is constant across forecasters.

Because the power family’s b parameter has little impact at large values of γ, one
must adopt a modified strategy for choosing a scoring rule from the family. We suggest
first setting b because it is more intuitive, as was done for the other families. In setting γ,
then, one must decide whether or not the scoring rule should be sensitive to non-extreme
forecasts (e.g., for b = .5, whether a forecast of .4 should receive a different score from a
forecast of .6). If the scoring rule should be sensitive to these forecasts, then smaller values
of γ (say, less than 20) are necessary. To choose a specific value of γ, it is probably necessary
to create plots of specific scoring rules in a manner similar to Figure 3. These plots can be
easily created using the scoring package that we described previously.

In addition to the power and pseudospherical families, Johnstone, Jose, and Winkler
(2011) propose a family of proper scoring rules that are tailored to decision makers’ utility
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Figure 7 . Spearman correlation between forecaster rankings under the Brier score and
forecaster rankings under scores in the baseline power family. Results are plotted by baseline
forecast b and parameter γ.
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Figure 8 . Spearman correlation between forecaster rankings under the Brier score and
forecaster rankings under scores in the baseline pseudospherical family. Results are plotted
by baseline forecast b and parameter γ.
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functions. For example, in a betting context, a decision maker may be assumed to have
a utility function associated with gains and losses in wealth. Johnstone et al.’s family can
be used to obtain a proper scoring rule that reflects this utility function. Importantly, this
family presumes that the decision maker can declare her utility associated with the actions
she may take based on a forecast f . As the authors state, such a declaration is difficult or
impossible in complex forecasting scenarios or in situations where multiple decision makers
use the same forecast f . Thus, for the forecasts of world events considered here, this family
would not be useful without strong assumptions about the forecasts’ consumption.

Conclusions

As mentioned in the introduction, previous researchers have stated that different
proper scoring rules lead to similar rankings of the assessors, at least when the rankings are
based on average scores. Similarly, we find that different scoring rules in the beta family
lead to similar rankings of forecasting methods, so long as our scoring rules are such that
c remains approximately constant (focusing on the beta family). However, it is possible to
find practically-different rankings under beta family rules where α 6= β; these are scoring
rules that generally lie off the diagonal of graphs such as Figure 2 and that have differing
cost parameters c. This, in turn, implies that it is insufficient to use a scoring rule simply
because it is strictly proper; instead, it is beneficial to consider the specific way in which
the scoring rule rewards and penalizes forecasts.

The beta family, or other two-parameter families such as the power or pseudospherical
with baseline, can generally help analysts choose a scoring rule that suits their needs. This
can be accomplished by first fixing a parameter that is interpreted as a cost of false positives
(in the beta family case) or as the baseline forecast (in the power and pseudospherical cases).
The second parameter can then be chosen by plotting the resulting scoring rule under
multiple potential values, in a manner similar to Figure 3. Additionally, in the beta and
pseudospherical cases, the analyst may be comforted by the fact that this second parameter
has a smaller impact on forecaster rankings than does the first parameter. Finally, in the
absence of the need to choose a single scoring rule, one can easily visualize results across
sets of scoring rules, as was displayed in Figures 2 and 4. These comparisons can provide
the analyst with information about the types of forecasts that are (in)accurate and about
the extent to which conclusions are robust.

This paper further shows that, while proper scoring rules encourage honest reporting
from the forecaster, they place much less constraint on the individual who chooses the
scoring rule. In particular, (i) choice of strictly proper scoring rule can have a large impact
on one’s results and conclusions, (ii) families of scoring rules can be used to evaluate forecasts
more holistically, and (iii) it is possible to choose specific scoring rules from these families in
a relatively intuitive fashion. Thus, forecast evaluators should routinely consider choosing
scoring rules from these families that are tailored to the domain, as opposed to relying on
popular, default scoring rules.

Computational Details

Results were obtained using the R system for statistical computing (R Development
Core Team, 2013), version 3.0.3. R is freely available under the General Public License 2
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from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/.
To evaluate forecasts under the beta, power, and pseudospherical families of scoring rules
(for binary outcomes), the R package scoring is also freely available under the General
Public License 2 from CRAN.
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Table A1
Artificial forecasts mimicking the distributional properties of the forecasts from the “Com-
paring Forecasters to One Another” section.

Item Forecaster ID Outcome
1 2 3 4 5 6 7 8 9 10

1 0 0.44 0 0.26 0 0.43 0.55 0.09 0.14 0.09 0
2 0 0.41 0.3 0.74 0.41 0.59 0.51 0.04 0.02 0.48 0
3 0 0.99 0.21 0.94 0.26 0.03 0.19 1 0.04 0.5 0
4 0 0.41 0.35 0.89 0.89 0.79 0.52 0.91 0.04 0.59 1
5 0 0 0 0 0.1 0.3 0.4 0.1 0 0 0
6 0.11 0.22 1 0.05 0.14 0.3 0.64 0.02 0.09 0.11 1
7 0 0 0.3 0.85 0.05 0.06 0.18 0 0.17 0.41 0
8 0 0.71 0.19 0.17 0.05 0 0.45 0.19 0.25 0.41 0
9 0.1 0.04 0 0.01 0.35 0.03 0.54 0.07 0.19 0.49 0
10 0.75 0.84 0.39 0.97 0.75 1 0.46 0 1 0.76 0
11 0 0.57 0 0.01 0.09 0.09 0.45 0 0.19 0.16 0
12 0 0.03 0 0.22 0.84 0 0.5 0.01 0 0.76 0
13 0.26 0.75 0 0.24 0.01 0.06 0.4 0.05 0.18 0.75 0
14 0.09 0.02 0.21 0.75 0.16 0.02 0.34 0.03 0.21 0.91 0
15 0 0.01 0 0.53 0.04 0.01 0.25 0.06 0.24 0.84 0
16 0 0.05 0.14 0.4 0.14 0.01 0.49 0 0 0.09 0
17 0 0.03 0.11 0.37 0.3 0 0.5 0.06 0 0.8 0
18 0 0.05 0.09 0.25 0.54 0 0.46 0.74 0 0.14 0
19 0 0.47 0.85 0.18 0.75 0.01 0.44 0.08 1 0.75 1
20 0 0.02 1 0.58 0.76 0.97 0.53 0.95 0 0.76 0
21 0 0.06 0.09 0.28 0.19 0.01 0.48 0.06 0 0.14 0

Appendix

While we are unable to share the original data, Table A1 includes artificial forecasts from
the section titled “Comparing Forecasters to One Another.” These forecasts mimic the
distributional properties of the original forecasts. Forecasts of exactly 0 and 1 were coded
as .0001 and .9999, respectively, so that no forecaster could obtain a score of infinity.


