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A common finding in confidence research is the hard-easy effect, where judges exhibit greater
overconfidence for more difficult sets of questions. Many explanations have been advanced
for the hard-easy effect, including systematic cognitive mechanisms, experimenter bias,
random error, and statistical artifact. In this paper, I mathematically derive necessary and
sufficient conditions for observing a hard-easy effect, and I relate these conditions to previous
explanations for the effect. I conclude that all types of judges exhibit the hard-easy effect
in almost all realistic situations. Thus, the effect’s presence cannot be used to distinguish
between judges or to draw support for specific models of confidence elicitation.
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Confidence and its calibration are oft-studied topics in the
decision sciences. The topics are relevant to many applied
areas, including finance (Thomson, Önkal-Atay, Pollock, &
Macaulay, 2003), meteorology (Murphy & Winkler, 1984),
and eyewitness testimony (Wells, 1981). Psychological re-
search on confidence also has implications for the elicitation
of prior distributions in Bayesian models (e.g., O’Hagan et
al., 2006). This general applicability of confidence elicitation
contributes to its popularity as a research area.

In the above applications, confidence is usually expressed
as a probability: given a single event, zero expresses cer-
tainty that the event will not occur, 1 expresses certainty
that the event will occur, and intermediate probabilities sig-
nify intermediate levels of certainty. This is known to de-
cision researchers as a No Choice-100 (NC100) task (termi-
nology from Ronis & Yates, 1987). In an alternative task, the
Choice-50 (C50) task, judges choose between two alterna-
tives and then report confidence in their choice. Confidence
is bounded at .5 and 1 because, if the judge’s confidence is
below .5, she should have chosen the other alternative.

Regardless of the task, researchers often examine a
judge’s calibration by comparing average confidence ( f ) over
a set of events to proportion correct (d) over the same set.
This results in the overconfidence statistic, OC:

OC = f −d. (1)

Judges are said to be well-calibrated if OC= 0; that is, if
their average confidence matches proportion correct. It is
very common to find that OC> 0; that is, that judges are
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overconfident.
A second ubiquitous finding in confidence research deals

with the magnitude of OC at different difficulty levels. This
finding, termed the hard-easy effect, was described in de-
tail by Lichtenstein, Fischhoff, and Phillips (1982; see also
Lichtenstein & Fischhoff, 1977). The effect states that peo-
ple tend to exhibit more overconfidence for hard sets of ques-
tions, vs. for easy sets of questions. Across experiments or
question sets, a hard-easy effect for the C50 task is displayed
in Figure 1. Proportion correct is on the x-axis, overconfi-
dence is on the y-axis, and each point represents a hypothet-
ical experiment or question set. The points show the general
hard-easy trend: as d increases, OC decreases.

Many explanations have been advanced for the hard-easy
effect, including insufficient placement of confidence cri-
teria in a signal detection framework (Ferrell & McGoey,
1980; Suantak, Bolger, & Ferrell, 1996), random error (Erev,
Wallsten, & Budescu, 1994), the insensitivity of confidence
to task difficulty (Price, 1998; von Winterfeldt & Edwards,
1986), and cognitive bias (Griffin & Tversky, 1992). While
these explanations are internal to the judge, other researchers
have proposed that the experimental design itself contributes
to the hard-easy effect. For example, Gigerenzer et al. (1991)
show that the biased selection of test questions can yield a
hard-easy effect: if an experimenter chooses more trick ques-
tions than are usually found in some domain, for example,
then we might expect a judge’s confidence to be artificially
high and accuracy to be artificially low.

Juslin, Winman, and Olsson (2000) quantify the hard-easy
effect as a regression weight between d and OC. In this pa-
per, I expand upon this insight and study the covariance be-
tween proportion correct and overconfidence. If this covari-
ance is negative, then we observe a hard-easy effect: as pro-
portion correct increases, overconfidence tends to decrease.
In deriving conditions under which the covariance is nega-
tive, I am able to derive necessary and sufficient conditions
for observing a hard-easy effect in empirical data. These con-
ditions provide a unifying framework for comparing and con-
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Figure 1. Graph of the hard-easy effect. Each point on the graph represents a hypothetical experimental outcome, and the negative trend
of the points represents the hard-easy effect. The two points in the grey box demonstrate a reversal of the hard-easy effect.
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trasting the explanations for the hard-easy effect described
above, as well as for determining the extent to which these
explanations are empirically separable.

The analyses in this paper formalize and extend a number
of other researchers’ verbal arguments and simple demon-
strations. Wallsten (1996) argues that confidence researchers
have placed too much emphasis on calibration and too lit-
tle emphasis on cognitive processes. He shows the extent to
which different analyses can impact the experimental results
(see also Dawes & Mulford, 1996; Erev et al., 1994), and he
demonstrates how the hard-easy effect can be a symptom of
the test (versus of the judge). In this paper, I am not con-
cerned with specific explanations for the hard-easy effect; I
instead argue that the effect cannot help us distinguish be-
tween the potential explanations. To be specific, I mathemat-
ically derive conditions that are necessary and sufficient for
observing a hard-easy effect. In relating these conditions to a
general model of judges, I show that the hard-easy effect will
occur in almost all experiments. Thus, presence of the effect
tells us nothing about the confidence elicitation process.

In the following pages, I first derive necessary and suf-
ficient conditions for observing the hard-easy effect. Next,

I use an error model of confidence to examine situations in
which the sufficient condition is satisfied. The situations in-
clude both C50 and NC100 experiments, described at the be-
ginning of the article. Finally, I discuss the general implica-
tions of my analyses for confidence research and modeling.

Necessary & Sufficient
Conditions for a Hard-easy Effect

As described in the introduction, the hard-easy effect can
be viewed as a description of the covariance between propor-
tion correct and overconfidence (cov(d,OC)): experimental
findings show that there tends to be a negative relationship
between these two measures. This relationship is shown in
Figure 1, which is a scatter plot of d versus OC. Each point
represents the d and OC calculated for a single test, and the
negative trend of the points represents a hard-easy effect. The
dotted line is the regression line for these data.

Following Figure 1, my analyses focus on hard-easy ef-
fects at the test level (i.e., where each point in the graph
represents a single test). While I focus on a single judge
completing a series of tests, the number of judges who take
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the tests is unimportant: we could plot a single judge’s data
across a series of tests as well as a group’s data across a se-
ries of tests. I ignore “within-test” analyses, where accuracy
is calculated within different confidence bins and calibra-
tion curves are employed (see, e.g., Dougherty, 2001; Fer-
rell & McGoey, 1980; Lichtenstein et al., 1982; Merkle &
Van Zandt, 2006). This is because the latter analyses do not
immediately take into account the proportion of responses
within each confidence bin, which can lead to misleading re-
sults (e.g., Wallsten, 1996).

To examine the ubiquity of the hard-easy effect, we can
expand cov(d,OC). In the equations below, d is proportion
correct and f is average confidence at the test level. Follow-
ing much empirical decision-making research, I assume that
the fi are scaled from 0–1 (or, for C50 tasks, from 0.5–1).

cov(d,OC) = cov(d, f −d)

= cov(d, f )− var(d)

= sd(d)sd( f )corr(d, f )− var(d)

= sd(d)[sd( f )corr(d, f )− sd(d)]. (2)

Based on Equation (2), it is possible to derive necessary and
sufficient conditions for the hard-easy effect.

Proposition 1. Assume that the hard-easy effect is defined
across tests as a negative covariance between d and OC.
Then:
(A) we will observe a hard-easy effect if and only if:
sd( f )corr(d, f ) < sd(d) (necessary condition).
(B) we will observe a hard-easy effect if: var( f ) < var(d)
(sufficient condition).

Proof. (A): Examining Equation (2), all standard deviations
are greater than or equal to 0. Thus, the sign of Equation (2)
depends entirely on the difference in brackets.
(B): By definition, corr(d, f ) ≤ 1. Thus, sd( f )corr(d, f ) ≤
sd( f ). The sufficient condition (expressed in Proposition 1
as variances instead of as standard deviations) automatically
satisfies the necessary condition.

An immediate implication from Proposition 1A (the nec-
essary condition) is that judges who report confidence judg-
ments that are completely unrelated to the stimulus will al-
ways exhibit a hard-easy effect. In such a case, corr(d, f ) =
0 (and sd(d) > 0 for realistic tests). Thus, through nothing
interesting on his or her part, the occasional undergraduate
who completes a 45-minute confidence experiment in 3 min-
utes will exhibit a hard-easy effect. An interesting aspect of
Proposition 1B (the sufficient condition) is that it contains a
definition of “insensitivity to task difficulty:” confidence is
not affected by task difficulty as much as it should be, and, in
turn, mean confidence varies less than does proportion cor-
rect. I will return to this issue in the General Discussion.

Judges (and mathematical models of confidence) whose
confidence and choice satisfy the Proposition 1B condition
will exhibit a hard-easy effect. Thus, it is of interest to de-
termine the ease with which this sufficient condition is satis-
fied. If every judge satisfies the condition on every test, then

it is useless to seek a scientific explanation for it. That is,
if a hard-easy effect is always present, a model’s ability to
exhibit the effect is meaningless.

Upon initial examination, it appears that Proposition 1B
is not very stringent. In reviewing sets of confidence ex-
periments, some researchers have noted that the variance of
accuracy tends to be larger than that of confidence (Dawes
& Mulford, 1996; Juslin et al., 2000). Consider further a
Choice-50 task, where judges choose one of two alternatives
and then give confidence in their chosen alternative.1 In this
task, confidence ranges from .5 to 1 because the judge should
choose the alternative that she believes is more likely to be
correct (that is, if confidence in the chosen alternative is be-
low .5, then the judge should have chosen the other alterna-
tive). As a result, d is based on a series of 0’s and 1’s, while
f is based on numbers that range from .5 to 1. Within any
one experiment, this leads us to surmise that the variance of
accuracy would tend to be greater than the variance of con-
fidence. The greater within-experiment variance of accuracy
might naturally lead to greater between-experiment variance.
If this is the case, then the condition in Proposition 1B is sat-
isfied. We thus observe a hard-easy effect, regardless of the
psychological mechanisms underlying confidence elicitation.

While the above arguments are intuitive, they are not for-
mal enough to draw any definitive conclusions. In the next
section, I mathematically develop the arguments to show that
the condition in Proposition 1B is satisfied in almost all real-
istic situations.

Satisfying the Sufficient
Condition

To study when the condition in Proposition 1B is satis-
fied, I use an error model of confidence2 (Juslin, Olsson,
& Björkman, 1997) to resemble realistic judges in two-
alternative confidence experiments. For each test item, the
model assumes that judges have a well-calibrated, internal
confidence judgment in the correctness of each alternative.
Choice is based on these internal confidence judgments, so
that the judge chooses the alternative that is more likely to be
correct. Random error then enters into the translation from
internal confidence to reported confidence. For a judge re-
sponding to item k (k = 1, . . . ,K) on test j ( j = 1, . . . ,J), this
is expressed as:

f jk = t jk + e jk, (3)

where f jk is reported confidence (bounded between 0 and 1),
t jk is internal confidence (bounded between 0 and 1), and

1 This task is commonly employed by decision researchers; see,
e.g., Arkes et al. (1987), Dawes (1980), Gigerenzer et al. (1991),
and Lichtenstein and Fischhoff (1977).

2 Juslin et al. (1997) refer to this model as the “response error
model.” I generically call it an “error model” here, because the
phrase “response error” is ill-defined and could lead readers to be-
lieve that the error term only captures one type of error. For differ-
ing definitions of “response error,” see Merkle et al. (in press) and
Olsson et al. (in press).
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e jk ∼ N(0,σ2) (unbounded3). t jk also reflects test difficulty,
because we assume that these internal confidence judgments
are perfectly calibrated.

The above model is very general; Merkle et al. (in press)
show that the error term in this model can account for a num-
ber of systematic biases. Thus, I can use the model to gener-
ally examine the frequency with which the hard-easy effect
occurs. I make no arguments that the error model best de-
scribes the confidence elicitation process; I simply use the
error term to encompass many potential explanations for the
hard-easy effect.

Assume that a single judge completes J tests which have
K items each. Further assume that item difficulty (described
by the t’s) arises from the same distribution across tests. If
K = ∞ (infinite number of items per test), then each test
would have the same difficulty. However, given the relatively
small values of K in many experiments, we can obtain tests
of varying difficulty while sampling all t’s from the same
distribution. This is a simplifying assumption that could be
relaxed if necessary.

Given a specific distribution of internal confidence judg-
ments (t’s) for the tests and constant error variance, the error
model’s predictions for var( f ) and var(d) are given by (see
Appendix A for more details; E is the expectation operator):

var(d) =
1

JK
[E(t(1− t))+ var(t)] (4)

var( f ) =
1

JK

[
var(t)+σ2] . (5)

For a specific experimental paradigm, these equations repre-
sent the error model’s predictions of how d and f vary across
tests. If Equation (4) is larger than Equation (5), then we will
observe a hard-easy effect. Substituting these equations into
Proposition 1B and rearranging, we will observe a hard-easy
effect if:

σ2 < E(t(1− t)). (6)

An immediate implication from Equation (6) is that, when
judges give perfectly-calibrated confidence judgments at the
item level, they will almost always exhibit a hard-easy ef-
fect at the test level. “Perfectly-calibrated at the item level”
means that, for each test item, the judge reports a confidence
judgment that equals her probability of choosing the correct
answer. In other words, when a judge reports confidence
of c for some item, she chooses the correct answer c% of
the time. “Test level” means that we give a judge multiple
tests, and we calculate average proportion correct and over-
confidence for each test. In the language of the error model
(Equation (3)), “perfect calibration at the item level” means
that σ2 = 0. Furthermore, regardless of the specific tests that
a judge takes, E(t(1− t))≥ 04. Thus, Equation (6) is almost
always satisfied.

The fact that perfect calibration at the item level leads to
a hard-easy effect at the test level is unintuitive. Perfect cali-
bration is usually defined at the test level, where, referring to
Figure 1, perfectly-calibrated judges would follow the hori-
zontal line along OC = 0. If judges are perfectly calibrated
at the item level, however, they can exhibit a hard-easy effect

due to the Bernoulli error (ε) inherent in d. In this situation,
we can write d = f +ε and OC = f −d =−ε. Positive (neg-
ative) values of ε make d large (small) and OC small (large).
This results in a hard-easy effect.5

The findings thus far go a long way towards rendering
the hard-easy effect an uninteresting phenomenon: the ef-
fect is present for both perfect judges and awful judges. I
proceed, however, to examine the ubiquity of the hard-easy
effect when judges are neither perfect nor awful. This is more
similar to real judges in real confidence experiments.

Example 1: Choice-50 Task

I first examine the relative magnitudes of var(d) and
var( f ) in the context of Choice-50 tasks, where judges first
choose one of two alternatives and then report confidence
ranging from .5-1. For these tasks, an initial distribution
from which we may elect to sample the t jk is the Uni-
form(0.5,1). With this distribution, it can be shown that
E(t(1− t)) = .167. Therefore, to observe a hard-easy effect,
the error variance must be less than .167.6 In the context of
real experiments, the .167 error variance is massive: across
many contexts, Juslin et al. (2000; 2003) estimate σ2 to be
between .015 and .03. Merkle et al. (in press) and Olsson et
al. (in press) both discuss the fact that this estimate is sur-
prisingly large. These estimates are nowhere close to .167,
indicating that, if judges respond in a C50 task according to
the error model, they will always exhibit the hard-easy effect.

A major assumption underlying the above example was
the distribution of the t jk. While I assumed a Uniform(0.5,1)
distribution, a more realistic distribution might involve many
of the t jk being clustered around .5 or 1 (see, e.g., Erev et al.,
1994; Wallsten, 1996). For simplicity, I specify a discrete
distribution on the t jk based on that from Erev et al.:

P(Tjk = t jk) =





.3 for t jk = .50

.1 for t jk = {.60, .70, .80, .90}

.3 for t jk = 1
0 otherwise

Under this distribution, E(t(1− t)) = .145. While this ex-
pectation is smaller than that of the Uniform distribution, it

3 The unbounded error allows for the possibility that f jk exceeds
its bounds. As stated in the discussion and shown in Appendix B,
this has no effect on the derivations in this paper.

4 Showing this involves expressing E(t(1− t)) as E(t)−E(t2).
For 0 ≤ t ≤ 1, E(t) ≥ E(t2) with equality holding only when
P(t = 0)+ P(t = 1) = 1. In words, E(t(1− t)) = 0 only when the
judge is certain of every item on a test.

5 Juslin et al. (2000) describe this type of miscalibration as “lin-
ear dependency,” though they do not explicitly relate it to perfectly-
calibrated judges. Furthermore, Klayman, Soll, and González-
Vallejo (1999) present a method for removing linear dependency
from observed confidence data.

6 The .167 figure is an absolute lowest bound for observing a
hard-easy effect. If we take into account corr( f ,d) (see Proposition
1A), then we can still observe a hard-easy effect when σ2 is greater
than .167.
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is still much larger than the σ2 estimates from previous re-
search. This means that we would still observe a hard-easy
effect when the t jk arise from the U-shaped distribution. In
the next example, I show that these results extend to tasks
where judges use a 0-1 confidence scale.

Example 2: No Choice-100 Task

While the above derivations demonstrate the ubiquity of
the hard-easy effect in C50 tasks, the situation does not ob-
viously extend to No Choice-100 (NC100) tasks. In these
tasks, judges do not choose between the two alternatives. In-
stead, they simply give a 0-1 confidence judgment as to the
truth of one specific alternative. Wallsten (1996) discusses
the fact that NC100 tasks are preferable to C50 tasks because
the base rate of true items is entirely in the experimenter’s
control. In contrast, the base rate of correct items in C50
tasks depends both on the experimenter’s selection of test
questions and the judge’s knowledge of those questions. This
can enhance any hard-easy effect that may already have been
present.

Sampling the t jk from a Uniform(0,1) distribution, we can
calculate E(t(1− t)) = .167. This expectation is the same
as that of the Uniform(0.5,1) distribution from the C50 task.
Thus, the same arguments apply: to make the hard-easy ef-
fect disappear, we must have σ2 ≥ .167. Given that this
variance is unrealistic in empirical data (Juslin et al., 2000;
Merkle et al., in press), judges will always yield a hard-easy
effect.

Similar to the U-shaped distribution in the C50 task, a W-
shaped distribution is more realistic for the t jk in an NC100
task. Such a distribution indicates a preponderance of items
that participants know are true, know are false, or know noth-
ing about. While Erev et al. (1994) employ a discrete W-
shaped distribution on the t jk, I use a mixture of independent
Beta distributions:

f (t)∼ 1
2

(Beta(20,20)+Beta(.25, .25)) . (7)

The Beta distribution is characterized by two parameters (of-
ten labeled α and β), and it is bounded at 0 and 1. When
α = β, as is the case for both Beta distributions above, the
distribution is symmetric around .5. The above mixture
distribution roughly corresponds to the discrete distribution
used by Erev et al., and it also lifts the restriction that judges’
internal probabilities must be multiples of .10. The distribu-
tion is displayed in Figure 2.

The Beta mixture distribution of t jk’s yields E(t(1− t)) =
.207. This is again larger than realistic σ2 values, and it is
also larger than the figure derived for the Uniform distribu-
tion above. This continues the general trend of observing
hard-easy effects in all realistic situations.

In an effort to find t jk distributions that do not result
in a hard-easy effect, I explored asymmetric Beta distribu-
tions (those for which α 6= β). For example, consider the
Beta(.25,1) distribution: this reflects an NC100 test where
participants know that most items are false (see Figure 3).
To be specific, 56% of the true probabilities (t’s) lie below .1.

Although this distribution is considerably different from the
others I considered, it still yields E(t(1− t)) = .089. This is
still far from the .015-.03 σ2 range that Juslin et al. estimate
from previous data.

Making the Hard-Easy Effect Disappear
Are there specific types of tests that make the hard-easy

effect disappear for realistic judges? In other words, what
values of α and β can we take so that E(t(1− t)) ≤ .03? To
answer this question, I derive an expression for E(t(1− t))
as a function of the Beta distribution parameters α and β:

E(t(1− t)) =
α2β+αβ2

(α+β)2(α+β+1)
. (8)

I then insert this expression into Equation (6), resulting in the
following condition for observing a hard-easy effect:

σ2 <
α2β+αβ2

(α+β)2(α+β+1)
. (9)

Three-dimensional contour plots of Equation (8) appear
in Figure 4 as a function of α and β (in the plots, E stands
for E(t(1− t))). Both plots display the same contour, but
from different angles. For different values of α and β, the
plots show values of σ2 that judges must achieve to make the
hard-easy effect disappear. In other words, we can horizon-
tally slice the plots at E = .03. Whenever our slicing touches
the contour, we have found a test (values of α and β) for
which realistic judges do not exhibit a hard-easy effect.

These plots show that, to obtain E(t(1−t))≤ .03, we need
either α or β to be very close to 0. When α is close to zero,
the majority of the t jk density is close to zero. When β is
close to zero, the majority of the t jk density is close to one.
These reflect situations where judges are certain that every
item is false (α ≈ 0), certain that every item is true (β ≈ 0),
or certain that some items are true and other items are false
(α ≈ β ≈ 0). To summarize, the hard-easy effect will disap-
pear only when judges are nearly certain about every ques-
tion on a test. These types of tests are useless in confidence
elicitation experiments: if judges are certain that every item
is either true or false, then confidence judgments add no extra
diagnostic information.

While the Beta distribution can generally account for tests
of varying difficulties, it cannot immediately account for
multimodal distributions. For example, the W-shaped dis-
tribution that I employed in Example 2 cannot arise from a
single Beta distribution. To obtain the W-shaped distribution,
I used a mixture of two symmetric Beta distributions. Under
the constraints that α1 = β1 and α2 = β2, this mixture has the
form:

f (t)∼ 1
2

(Beta(α1,β1)+Beta(α2,β2)) . (10)

For such mixtures of symmetric Beta distributions, it is pos-
sible to show that:

E(t(1− t)) =
1
4

[
1− 1

4

(
1

(2α1 +1)
+

1
(2α2 +1)

)]
. (11)
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Figure 2. Mixture of Beta(20,20) and Beta(.25,.25) densities.
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Thus, we observe a hard-easy effect if:

σ2 <
1
4

[
1− 1

4

(
1

(2α1 +1)
+

1
(2α2 +1)

)]
. (12)

Three-dimensional contour plots of Equation (11) appear
in Figure 5 as a function of α and β (in the plots, E stands
for E(t(1− t))). Both plots display the same contour, but
from different angles. Slicing the plots at E = .03 to resem-
ble realistic judges, we see that there exist almost no tests
for which the hard-easy effect disappears. The only tests that
do make the hard-easy effect disappear are those for which
α≈ β≈ 0. As discussed earlier, these are unrealistic tests for
which judges are certain of all items. Thus, judges exhibit a
hard-easy effect for all realistic tests that arise from a mixture
of symmetric Beta distributions.

Discussion
The above analyses show that, when realistic judges re-

spond in a confidence experiment according to the response-
error model, the sufficient condition in Proposition 1 is satis-
fied in all realistic situations. This means that judges always
exhibit a hard-easy effect in these situations. Wallsten (1996)

addresses this topic in the context of a single t jk: he demon-
strates that, given a constant response strategy in a Choice-50
task, judges can be overconfident or underconfident depend-
ing on the magnitude of t jk (leading to a hard-easy effect).
The current derivations extend Wallsten’s work by consider-
ing sets of t jk and responses that differ for each t jk. They
show the extent to which the hard-easy effect is ubiquitous
in both Choice-50 and No Choice-100 tasks. In addition,
the mathematical derivations show that perfectly-calibrated
judges (those with σ2 = 0) and awful judges (those whose
confidence judgments are unrelated to the stimulus) always
exhibit the hard-easy effect.

General Discussion

In this paper, I derived necessary and sufficient condi-
tions for observing a hard-easy effect. Using a simple er-
ror model of confidence, I then examined situations under
which we could expect to observe a hard-easy effect. Across
both Choice-50 tasks and No Choice-100 tasks, I showed
that judges almost always exhibit hard-easy effects, even
when their confidence judgments are perfectly calibrated at
the item level. This result occurs in both Choice-50 and No
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Figure 3. The Beta(.25,1) density.
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Choice-100 tasks, and it is robust to changes in the distribu-
tions of internal probabilities (t jk’s). Hard-easy effects were
exhibited across Uniform distributions of internal probabili-
ties, W-shaped mixtures of Beta distributions, and any single
Beta distribution reflecting a realistic test. In the following
paragraphs, I discuss the extent to which my assumptions
may have influenced my results, as well as implications of
my findings.

Assumptions

I employed three main assumptions to derive the results in
this paper. They are:

1. Judges respond according to the response-error model.
2. The t jk follow a Beta distribution.
3. Overt confidence judgments ( f ’s) are not bounded be-

tween 0 and 1.
While I have already addressed some of these assump-

tions, I directly discuss the impact of each of these assump-
tions below.

Use of the Error Model. A major assumption of my analy-
ses is that the error model with σ2 ≈ .03 adequately describes
real judges. If this assumption is grossly incorrect, then there

might still exist some realistic situations where the hard-easy
effect is absent. There are two main ways in which this as-
sumption can be violated: (1) σ2 is actually much larger than
.03, or (2) the error model is simply a poor description of the
confidence elicitation process.

As briefly addressed earlier in the paper, previous con-
fidence data and analyses provide evidence that the error
model is reasonable. Merkle et al. (in press) show that
the model can mimic data from other confidence models
such as the Decision Variable Partition Model (Ferrell &
McGoey, 1980) and models that incorporate alternative-
underweighting biases (McKenzie, 1997). Furthermore,
Merkle et al. show that the σ2 estimates from Juslin et al.
(2000, which is similar to estimates from Björkman, 1994;
Juslin et al., 1997) likely incorporate systematic biases as
well as error. Thus, the error model with σ2 = .03 yields data
that are similar to empirical data (Juslin et al., 2000 report
an R2 of .99), even though judges obviously do not respond
according to the model. Given that the hard-easy effect is
one of observed data and is not tied to a specific confidence
elicitation process, this assumption seems reasonable.
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Figure 4. Contour plots of Equation (8) as a function of α and β. For the term on the right side of Equation (8) to be below .03, it is
necessary that α≈ 0 or β≈ 0.
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Figure 5. Contour plots of Equation (11) as a function of α and β. For the term on the right side of Equation (11) to be below .03, it is
necessary that α≈ β≈ 0.
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Use of the Beta Distribution. The second assumption is
that judges’ true probabilities (t jk’s) arise from a Beta dis-
tribution (although I did examine a small number of other
distributions). The Beta distribution is flexible, encompass-
ing the Uniform(0,1) distribution as well as many asymmet-
ric distributions. Thus, many plausible t jk distributions can
arise from the Beta distribution. The Beta distribution can-
not, however, generally account for multimodal distributions.
For example, the Beta cannot immediately yield a W-shaped
distribution, where judges know many test questions and are
completely uncertain of others. I employed a mixture of
symmetric Beta distributions to examine this situation, but
I could not undertake an exhaustive analysis of all possible
Beta mixture distributions. Given the other analyses, how-
ever, I would be surprised to find a Beta mixture distribution
that both resembles a realistic test and fails to yield a hard-
easy effect.

Unbounded Confidence Judgments. Finally, in comparing
f with d, I do not account for the fact that reported con-
fidence judgments are bounded between 0 and 1. The ad-
dition of random error to each t jk allows for the possibility
that some confidence judgments become smaller than 0 or
larger than 1. The sufficient condition that I employed for
observing a hard-easy effect, however, is var( f ) < var(d).
If I did account for the confidence bounds in my analyses,
then var( f ) would decrease and var(d) would remain the
same. Thus, the observation of a hard-easy effect in my anal-
yses implies the observation of a hard-easy effect in bounded
confidence data. While it was mathematically simpler to dis-
regard the bounds of the confidence scale, it also resulted
in conservative analyses. Further evidence supporting this
claim appears in Appendix B, where I describe simulations
that explicitly account for the bounds of the confidence scale.

Reversals of the Hard-easy Effect
Gigerenzer et al. (1991) discuss two studies (Keren, 1988;

Ronis & Yates, 1987) that yield a total of four hard-easy ef-
fect reversals. There is nothing systematic about these two
experiments: each experiment was intended to study some-
thing other than the hard-easy effect, and the original authors
provide few analyses that are specifically relevant to the hard-
easy effect. However, within some conditions of both stud-
ies, participants exhibited more overconfidence for an easy
test than for a hard test (see Gigerenzer et al.’s Figure 10).
These hard-easy reversals initially appear to invalidate the
current results: I have argued that the hard-easy effect always
occurs (i.e., that the covariance between proportion correct
and overconfidence is always negative), while Gigerenzer et
al. discuss studies where it does not occur (i.e., where the
covariance appears positive).

Upon closer examination, the hard-easy effect definition
employed in this paper (cov(d,OC) < 0) can accommodate
reversals of the sort described by Gigerenzer et al. An ex-
ample of this is shown within the grey box in Figure 1. The
two points within the box depict a hard-easy reversal: there
is greater overconfidence for the easier test. Examining the
overall trend of all the points in the graph, however, there is

a clear hard-easy effect. In general, two tests are insufficient
to reliably assess the covariance that defines the hard-easy
effect.

Verbal vs. Mathematical Definitions

The sufficient conditions derived in this paper can also be
used to clarify explanations for overconfidence and the hard-
easy effect. As described earlier in the paper, the sufficient
condition for the hard-easy effect in Proposition 1 contains
one definition of “insensitivity to task difficulty.” Thus, we
might accept insensitivity to task difficulty as a valid expla-
nation for the effect. This agrees with many other researchers
(e.g., Lindsay, Nilsen, & Read, 2000; Merkle & Van Zandt,
2006; Price, 1998; Sieck, Merkle, & Van Zandt, 2007; Weber
& Brewer, 2004), who have discussed empirical findings re-
lated to insensitivity to task difficulty. Interestingly, however,
Proposition 1 shows that insensitivity to task difficulty is not
necessary for the hard-easy effect to occur.

Two further caveats can be made on the “insensitivity to
task difficulty” explanation. First, the definition in Proposi-
tion 1B is data-driven: we know whether a judge is insen-
sitive to task difficulty by directly examining whether a set
of data satisfy the condition in Proposition 1B. This makes
insensitivity to task difficulty more of an effect than an expla-
nation. Other explanations for overconfidence and the hard-
easy effect are more process-driven. For example, McKenzie
(1997) argues that, in assessing confidence, judges “under-
weight the alternative:” they focus on their chosen alternative
and ignore the unchosen alternative(s). There is nothing in
the observed data that tells us definitively whether alternative
underweighting occurred; we must rely on experimental ma-
nipulations designed to impact alternative underweighting.
This type of explanation for overconfidence and the hard-
easy effect is potentially more useful than that in Proposition
1B.

A second caveat is that we can define “insensitivity to task
difficulty” in ways other than the definition in Proposition
1B. For example, Gigerenzer et al. (1991) define the phrase
as a judge’s inability to accurately gauge her performance on
a test. This definition, which does not necessarily involve
confidence, leads Gigerenzer et al. to conclude that their ex-
periments “do not support the explanation of overconfidence
and the hard-easy effect by assuming that subjects are insen-
sitive to task difficulty” (p. 520). The authors specifically
found that judges were relatively accurate in guessing their
proportions correct across tests that varied in difficulty.

To summarize these experimental results, judges are rel-
atively good at directly guessing their accuracy for a set
of questions. Judges are relatively bad at indirectly guess-
ing their accuracy via confidence judgments for each item.
These results are consistent with the notion of separate psy-
chological mechanisms for confidence and choice.7 Such a

7 This statement may appear to conflict with my analyses in this
paper, where I assume a single model of confidence and choice. The
distinction between a model’s ability to fit data versus a model’s
ability to describe the confidence elicitation process becomes im-
portant here: I assume that the error model can sufficiently fit ob-
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notion was discussed by Griffin and Tversky (1992), and it
has recently been studied in the context of signal detection
(Mueller & Weidemann, 2008) and the ASC model of con-
fidence (Sieck et al., 2007). Furthermore, the above para-
graphs demonstrate that we can define “insensitivity to task
difficulty” in multiple ways, and that these different defi-
nitions can lead us to different conclusions. This demon-
stration generally highlights the importance of mathematical
definitions for psychological phenomena: while verbal def-
initions are intuitive, they lack the precision to specifically
define a phenomenon (e.g., Myung & Pitt, 2001).

Summary

Based on the results in this paper, I conclude that the hard-
easy effect tells us nothing about the “goodness” of a judge
or about the confidence elicitation process. From an empiri-
cal perspective, both perfectly-calibrated judges (at the item
level) and terrible judges (those whose confidence is unre-
lated to the stimulus) exhibit the hard-easy effect. From a
modeling perspective, the hard-easy effect occurs for all re-
alistic judges and tests. Any model that provides a reason-
able fit to observed data will exhibit the effect. Thus, the
effect cannot help us learn about the confidence elicitation
process because it cannot help us discriminate between po-
tential confidence elicitation models. These results formalize
and extend Wallsten’s (1996) statement that the hard-easy ef-
fect and overconfidence are “not suitable for investigating ba-
sic cognitive processes” (p. 225). Instead, other confidence
measures such as response distributions or base rates are nec-
essary for the study of confidence elicitation mechanisms.
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Appendix A
Derivation of var(d) and var( f )

for the Error Model

In this appendix, I derive var(d) and var( f ) (Equations (4)
and (5)) under the error model used in this paper. I first
present a general version of the model, and I then discuss
the specific assumptions employed for the derivations.

Let the d jk be exchangeable 0/1 variables denoting
whether or not a judge correctly answers item k (k = 1, . . . ,K)
on test j ( j = 1, . . . ,J). Each d jk depends on a latent variable
t jk in (0,1) with distribution g j(t), such that f (d jk | t jk) ∼
Bernoulli(t jk).

The f jk depend on t jk such that:

f jk = t jk + e jk, (13)

where the e jk are independent and follow a distribution h j(e)
with mean 0. Independent sampling of the t jk from g j(t)
implies that the d jk are independent of one another (and also
that the fi j are independent of one another).

The error model described in this paper assumes spe-
cific distributions for the above model. First, it assumes

that g j(t) ∼ Beta(α,β) ∀ j. In words, the model assumes
that item difficulty follows the same distribution from test to
test. This assumption is similar to experiments that randomly
sample test items from a specific domain (e.g., Gigeren-
zer et al., 1991). Next, the model assumes that h j(e) ∼
N(0,σ2) ∀ j. This implies that the judge’s response error
distribution is constant across items and tests. While these
assumptions simplify the derivations, they are not necessary
to demonstrate the ubiquity of the hard-easy effect.

Employing the above assumptions, we can obtain the un-
conditional variance of d via the conditional variance identity
(e.g., Casella & Berger, 2002):

var(d) = var(
1
J ∑

j

1
K ∑

k
d jk)

=
1

(JK)2 ∑
j
∑
k

[
E(var(d jk | t jk))+ var(E(d jk | t jk))

]

=
1

(JK)2 ∑
j
∑
k

[
E(t jk(1− t jk))+ var(t jk)

]

=
1

JK
[E(t(1− t))+ var(t)] .

The variance of f is:

var( f ) = var(
1
J ∑

j

1
K ∑

k
f jk)

=
1

(JK)2 ∑
j
∑
k

[var(t jk)+ var(e jk)]

=
1

JK

[
var(t)+σ2] .

When σ2 < E(t(1− t)), var( f ) < var(d). This implies a
hard-easy effect (see Proposition 1).

Appendix B
Bounded Error

In this section, I show that some of the results in the paper
hold when accounting for the (0,1) bounds of the confidence
scale. Following Erev et al. (1994), error is added to the
unbounded log-odds of t jk to yield an intermediate variable
x jk:

x jk = log
(

t jk

1− t jk

)
+ e jk, (14)

where e jk ∼ N(0,σ2). The intermediate variable, x jk, is then
transformed back to the (0,1) scale to yield f jk:

f jk =
exp(x jk)

1+ exp(x jk)
. (15)

Closed-form expressions for var( f ) are unavailable, so I con-
ducted a simulation study to examine the situations under
which a hard-easy effect is observed.
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For the simulations, I allowed the two test difficulty pa-
rameters (Beta distribution parameters α and β) to vary from
0.001 to 30.001 in increments of 0.5. This specific range was
chosen based on the analyses in the main text, which show
that the hard-easy effect disappears only at small values of α
and β. Furthermore, I allowed the error variance parameter
(σ2) to vary from 0.001 to 1.9 in increments of 0.02. The
(0.001,1.9) σ2 range on the log-odds scale approximates the
(0,0.03) σ2 range on the untransformed confidence scale.

For each combination of parameter values, I generated
1000 tests of 50 items each. In calculating d and f for each
test, presence of a hard-easy effect was assessed by examin-
ing whether cov(d,OC) < 0. Of the 353,495 datasets gener-
ated, hard-easy effects were observed in all but 146. For all
146 datasets in which the hard-easy effect was absent, either
α or β equaled 0.001. These findings support the claim that
the hard-easy effect appears in all realistic situations.


